概率与统计学第一章第一节第1页,共14页,星期日,2025年,2月5日1654年,一个名叫梅累的骑士就“两个赌徒约定赌若干局,且谁先赢c局便算赢家,若在一赌徒胜a局(ac),另一赌徒胜b局(bc)时便终止赌博,问应如何分赌本”为题求教于帕斯卡,帕斯卡与费马通信讨论这一问题,于1654年共同建立了概率论的第一个基本概念数学期望.一、概率论的诞生及应用1.概率论的诞生第2页,共14页,星期日,2025年,2月5日2.概率论的应用概率论是数学的一个分支,它研究随机现象的数量规律,概率论的应用几乎遍及所有的科学领域,例如天气预报、地震预报、产品的抽样调查,在通讯工程中概率论可用以提高信号的抗干扰性、分辨率等等.第3页,共14页,星期日,2025年,2月5日在一定条件下必然发生的现象称为确定性现象.“太阳不会从西边升起”,1.确定性现象“同性电荷必然互斥”,“水从高处流向低处”,实例自然界所观察到的现象:确定性现象随机现象二、随机现象第4页,共14页,星期日,2025年,2月5日在一定条件下可能出现也可能不出现的现象称为随机现象.实例1在相同条件下掷一枚均匀的硬币,观察正反两面出现的情况.2.随机现象“函数在间断点处不存在导数”等.结果有可能出现正面也可能出现反面.确定性现象的特征条件完全决定结果第5页,共14页,星期日,2025年,2月5日结果有可能为:1,2,3,4,5或6.实例3抛掷一枚骰子,观察出现的点数.实例2用同一门炮向同一目标发射同一种炮弹多发,观察弹落点的情况.结果:弹落点会各不相同.第6页,共14页,星期日,2025年,2月5日实例4从一批含有正品和次品的产品中任意抽取一个产品.其结果可能为:正品、次品.实例5过马路交叉口时,可能遇上各种颜色的交通指挥灯.第7页,共14页,星期日,2025年,2月5日实例6出生的婴儿可能是男,也可能是女.实例7明天的天气可能是晴,也可能是多云或雨.随机现象的特征概率论就是研究随机现象规律性的一门数学学科.条件不能完全决定结果第8页,共14页,星期日,2025年,2月5日2.随机现象在一次观察中出现什么结果具有偶然性,但在大量试验或观察中,这种结果的出现具有一定的统计规律性,概率论就是研究随机现象这种本质规律的一门数学学科.随机现象是通过随机试验来研究的.问题什么是随机试验?如何来研究随机现象?说明1.随机现象揭示了条件和结果之间的非确定性联系,其数量关系无法用函数加以描述.第9页,共14页,星期日,2025年,2月5日1.可以在相同的条件下重复地进行;2.每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3.进行一次试验之前不能确定哪一个结果会出现.在概率论中,把具有以下三个特征的试验称为随机试验.定义三、随机试验第10页,共14页,星期日,2025年,2月5日