指数式、对数式、幂式的大小比较
题型一临界值法比较大小
[典例1](1)(2024·天津高考)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()
A.abc B.bac
C.cab D.bca
(2)已知a=log52,b=1log0.10.7,c=0.70.3,则a,b
A.acb B.abc
C.bca D.cab
[听课记录]____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
临界值法比较大小的关键是寻找合适的中间值,如常考虑a,b,c与特殊数字“0”“1”“12”的大小关系.
[跟进训练]
1.(1)(2025·山西运城模拟)设a=140.8,b=log0.30.2,c=log0.30.4,则a,b,
A.abc B.bac
C.cab D.bca
(2)已知a=2log32,b=2log5
A.abc B.bac
C.cba D.cab
题型二数形结合法比较大小
[典例2](多选)(2025·重庆巴蜀中学模拟)已知实数a,b,c满足:2a=13b=log2
A.bac B.abc
C.acb D.bca
[听课记录]____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
本例属于方程根问题,求解的关键是等价转化为相应函数图象的交点问题,如将问题转化为函数y=2x,y=13x,y=log2x的图象与直线y=t
[跟进训练]
2.(2025·山西晋中模拟)若ea=-lna,e-b=lnb,e-c=-lnc,则()
A.abc B.acb
C.bca D.bac
题型三利用指数、对数及幂的运算性质比较大小
[典例3](1)设a=ln22,b=ln33,c=ln66,则
A.abc B.bca
C.bac D.cab
(2)已知a=3log83,b=-12log1316,c=log43,则a
A.abc B.cab
C.bca D.bac
[听课记录]_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________