培优点4帕德近似
分值:42分
一、单项选择题(每小题5分,共25分)
1.(2024·安康模拟)已知a=e0.2-1,b=ln1.2,c=16
A.acb B.bac
C.bca D.cba
2.若a=sin116,b=2ln3-3ln2,c=3
A.cba B.abc
C.cab D.acb
3.(2024·威海模拟)设a=110,b=ln1.21,c=10sin1
A.abc B.bac
C.cab D.cba
4.已知a=tan12,b=47,c=
A.cab B.cba
C.abc D.acb
5.已知a=110cos14,b=ln109,c
A.cab B.bca
C.abc D.acb
二、解答题(共17分)
6.(17分)(2024·绍兴模拟)帕德近似是法国数学家亨利·帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m,n,函数f(x)在x=0处的[m,n]阶帕德近似定义为R(x)=a0+a1x+…+amxm1+b1x+…+bnxn,且满足f(0)=R(0),f(0)=R(0),f″(0)=R″(0),…,f?(m+n)(0)=R(m+n)(0)
(注:f″(x)=[f(x)],f(x)=[f″(x)],f(4)(x)=[f(x)],f?(5)(x)=[f?(4)(x)],…)
(1)求实数a,b的值;(4分)
(2)当x∈(0,1)时,试比较f(x)与R(x)的大小;(5分)
(3)定义数列{an}:a1=12,anean+1=ean-1,求证:12n≤
答案精析
1.D[由帕德近似公式得
a=e0.2-1≈0.2
≈0.2214,
b=ln1.2=ln(1+0.2)
≈3×0.22+6×
c=16≈0.1667,故cba.
2.C[由帕德近似公式得
a=sin116≈6×
≈0.0625,
b=2ln3-3ln2=ln9-ln8
=ln98=ln
≈3×164+6×181
c=332≈1.73232≈0.054
∴cab.]
3.B[b=ln1.21=ln1.12=2ln1.1
≈2×3
=2×0.636.61≈0.1906
c=10sin1100≈10×
=10×0.066.0001=0.66.00010.
a=110=0.1,故bac.
4.B[a=tan12≈3×123?14=
b=47≈0.5714
c=2.023
≈2.0234×
≈0.8386,∴cba.]
5.B[由cosx,ln(x+1),ex的帕德近似公式:
cosx≈?5x
ln(x+1)≈3x
ex≈x2
a=110cos14≈1
≈0.09689,b=ln10
≈3×181+6×1
c=0.09e0.09≈0.09×0.
≈0.09848,∴bca.]
6.(1)解由题意得
R(x)=a
=a?
R″(x)=?2b
f(0)=f(0)=f″(0)=1,
故R(0)=a-b=1,
R″(0)=-2b(a-b)=1,
解得a=12,b=-1
(2)解由上可得R(x)=1+x21?x2=2+x2?x,要比较f(x)与R
只需比较1与2+x2?xe
令g(x)=2+x2?xe-x,x∈(0
g(x)=4(2?x)
=x2(2?x)2
所以g(x)在(0,1)上单调递增,
所以g(x)g(0)=1,即2+x2?x
所以f(x)R(x).
(3)证明设u(x)=ex-x-1,
u(x)=ex-1,
当x0时,u(x)0,
u(x)在(-∞,0)上单调递减,
当x0时,u(x)0,
u(x)在(0,+∞)上单调递增,
故u(x)≥u(0)=0,即ex≥x+1,当且仅当x=0时,等号成立.
由题意知a1=12,anean+1=ean-1
则ean+1=ea
故可得an0;
ean+1-ea
=(1?a
令m(x)=(1-x)ex,x0,m(x)=-xex0,
故m(x)在(0,+∞)上单调递减,
又当x→0+时,y=(1?x)ex
故可得ean+1-
即an+1an,可得0an≤12
一方面,由(2)可得
ean+1=ean
又因为ean+1an
所以可得an+1+122?
即an+1an2?an,即1
即1an+1
故1an-12n-11a1
即1an2n-1,所以an
另一方面,当n=1时,a1=12,要证an≥12n,即证an+1≥12a
令g(x)=ex2-e?x2-
g(x)=12ex2
所以g(x)在0,
所以g(an)g(0)=0,
即ean2-e?an2-
?ean+1ean2?an