第3节随机事件的概率与古典概型
一、单项选择题
1.从A,B,C,D,E这五名班干部中选两人代表班级参加一次活动,则样本空间中样本点的个数为()
A.5B.10C.15D.20
2.已知P(A)=0.6,P(B)=0.3,如果A?B,那么P(A∩B)=()
A.0.18 B.0.42
C.0.6 D.0.7
3.(2024·济南三模)哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如12=5+7,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是()
A.121 B.2
C.17 D.
4.两名同学在一次用频率估计概率的试验中统计了某一结果出现的频率,绘制出统计图如图所示,则符合这一结果的试验是()
A.抛一枚硬币,正面朝上的概率
B.掷一枚正六面体的骰子,出现1点的概率
C.转动如图所示的转盘,转到数字为奇数的概率
D.从装有2个红球和1个蓝球的口袋中任取一个球恰好是蓝球的概率
5.从装有10个红球和10个白球的罐子里任取两球,下列情况中互斥而不对立的两个事件的是()
A.至少有一个红球;至少有一个白球
B.恰有一个红球;都是白球
C.至少有一个红球;都是白球
D.至多有一个红球;都是红球
6.从装有若干个红球和白球(除颜色外其余均相同)的黑色布袋中,随机不放回地摸球两次,每次摸出一个球.若事件“两个球都是红球”的概率为215,“两个球都是白球”的概率为13,则“两个球颜色不同”的概率为(
A.415 B.7
C.815 D.
7.天上有三颗星星,地上有四个孩子.每个孩子向一颗星星许愿,如果一颗星星只收到一个孩子的愿望,那么该愿望成真,若一颗星星收到至少两个孩子的愿望,那么向这颗星星许愿的所有孩子的愿望都无法成真,则至少有两个孩子愿望成真的概率是()
A.19 B.29 C.49
二、多项选择题
8.小张上班从家到公司开车有两条线路,所需时间(分钟)随交通堵塞状况有所变化,其概率分布如下表所示:
所需时间(分钟)
30
40
50
60
线路一
0.5
0.2
0.2
0.1
线路二
0.3
0.5
0.1
0.1
则下列说法正确的是()
A.任选一条线路,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件
B.从所需的平均时间看,线路一比线路二更节省时间
C.如果要求在45分钟以内从家赶到公司,小张应该走线路一
D.若小张上、下班走不同线路,则所需时间之和大于100分钟的概率为0.04
9.设A,B是两个随机事件,已知P(AB)=P(BA)=14,P(A+B)=34,则(
A.P(A)=12 B.P(B)=
C.P(AB)=12 D.P(AB
三、填空题
10.甲、乙两人破译同一个密码,记甲、乙破译出密码分别为事件A,B,则AB∪AB表示的含义是,事件“密码被破译”可表示为.
11.某公司现有员工120人,在荣获“优秀员工”称号的85人中,有75人是高级工程师.既没有荣获“优秀员工”称号又不是高级工程师的员工共有14人,公司将随机选择一名员工接受电视新闻节目的采访,被选中的员工是高级工程师的概率为.
12.将一个骰子连续抛掷三次,它落地时向上的点数能组成等差数列的概率为.
四、解答题
13.某食品公司在中秋节来临之际开发了一种月饼礼盒,礼盒中共有7个月饼,其中有4个五仁月饼和3个枣泥月饼.
(1)一次取出两个月饼,求两个月饼为同一种口味的概率;
(2)依次不放回地从礼盒中取2个月饼,求第1次、第2次取到的都是五仁月饼的概率;
(3)依次不放回地从礼盒中取2个月饼,求第2次取到枣泥月饼的概率.
14.某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
A配方的频数分布表
指标值
[90,94)
[94,98)
[98,102)
[102,106)
[106,110]
频数
8
20
42
22
8
B配方的频数分布表
指标值
[90,94)
[94,98)
[98,102)
[102,106)
[106,110]
频数
4
12
42
32
10
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(单位:元)与其质量指标值t的关系为y=-2,t94,2,94≤t102,
15.某站台经过统计发现,一号列车准点到站的概率为13,二号列车准点到站的概率为34,一号列车准点到站或者二号列车不准点到站的概率为12,记“一号列车准点到站且二号列车不准点到站”为