2.工作原理如图所示为一个二极永磁转子(也可以是多极),当定子三相绕组通上交流电源后,就产生一个旋转磁场,图中用另一对旋转磁极表示,该旋转磁场将以同步转速ns旋转。由于磁极同性相斥,异性相吸与转子的永磁磁极互相吸引,并带着转子一起旋转,因此,转子也将以同步转速,n,与旋转磁场一起。当转子加上负载转矩之后,转子磁极轴线将落后定子磁场轴线一个θ角,随着负载增加,θ也随之增大;负载减少时,θ角也减少;只要不超过一定限度,转子始终跟着定子的旋转磁场以恒定的同步转速ns旋转。转子速度nr=ns=60f/p,即由电源频率f和磁极对数p决定。二、永磁交流伺服电动机当负载超过一定极限后,转子不再按同步转速旋转,甚至可能不转,这就是同步电动机的失步现象,此负载的极限称为最大同步转矩。二、永磁交流伺服电动机3.永磁同步伺服电动机的性能(1)交流伺服电动机的机械特性比直流伺服电动机的机械特性要硬,其直线更为接近水平线。另外,断续工作区范围更大,尤其是高速区,这有利于提高电动机的加、减速能力。(2)高可靠性。用电子逆变器取代了直流电动机换向器和电刷,工作寿命由轴承决定。因无换向器及电刷,也省去了此项目的保养和维护。(3)主要损耗在定子绕组与铁芯上,故散热容易,便于安装热保护;而直流电动机损耗主要在转子上,散热困难。(4)转子惯量小,其结构允许高速工作。(5)体积小,质量小。二、永磁交流伺服电动机4.交流调速的基本方法由电机学基本原理可知,交流电机的同步转速为n0=60f1/p(r/min)异步电动机的转速为n=60f1/p(1-S)=n0(1-S)(r/min)式中,f1为定子供电频率(Hz);p为电机定子绕组磁极对数;S为转差率。二、永磁交流伺服电动机伺服驱动系统常见故障分析1.伺服驱动器发展趋势现代交流伺服系统,经历了从模拟到数字化的转变,数字控制环已经无处不在,比如换相、电流、速度和位置控制;采用新型功率半导体器件、高性能DSP加FPGA、以及伺服专用模块(比如IR推出的伺服控制专用引擎)也不足为奇。国际厂商伺服产品每5年就会换代,新的功率器件或模块每2~2.5年就会更新一次,新的软件算法则日新月异,总之产品生命周期越来越短。总结国内外伺服厂家的技术路线和产品路线,结合市场需求的变化,可以看到以下一些最新发展趋势。拓展知识(1)高效率化。尽管这方面的工作早就在进行,但是仍需要继续加强。主要包括电机本身的高效率比如永磁材料性能的改进和更好的磁铁安装结构设计,也包括驱动系统的高效率化,包括逆变器驱动电路的优化,加减速运动的优化,再生制动和能量反馈以及更好的冷却方式等。(2)直接驱动。直接驱动包括采用盘式电机的转台伺服驱动和采用直线电机的线性伺服驱动,由于消除了中间传递误差,从而实现了高速化和高定位精度。直线电机容易改变形状的特点可以使采用线性直线机构的各种装置实现小型化和轻量化。拓展知识(3)高速、高精、高性能化。采用更高精度的编码器(每转百万脉冲级),更高采样精度和数据位数、速度更快的DSP,无齿槽效应的高性能旋转电机、直线电机,以及应用自适应、人工智能等各种现代控制策略,不断将伺服系统的指标提高。(4)一体化和集成化。电动机、反馈、控制、驱动、通讯的纵向一体化成为当前小功率伺服系统的一个发展方向。有时我们称这种集成了驱动和通讯的电机叫智能化电机(SmartMotor),有时我们把集成了运动控制和通讯的驱动器叫智能化伺服驱动器。电机、驱动和控制的集成使三者从设计、制造到运行、维护都更紧密地融为一体。拓展知识(5)通用化。通用型驱动器配置有大量的参数和丰富的菜单功能,便于用户在不改变硬件配置的条件下,方便地设置成V/F控制、无速度传感器开环矢量控制、闭环磁通矢量控制、永磁无刷交流伺服电动机控制及再生单元等五种工作方式,适用于各种场合,可以驱动不同类型的电机,比如异步电机、永磁同步电机、无刷直流电机、步进电机,也可以适应不同的传感器类型甚至无位置传感器。可以使用电机本身配置的反馈构成半闭环控制系统,也可以通过接口与外部的位置或速度或力矩传感器构成高精度全闭环控制系统。拓展知识(6)智能化。现代交流伺服驱动器都具备参数记忆、故障自诊断和分析功能,绝大多数进口驱动器都具备负载惯量测定和自动增益调整功能,有的可以自动辨识电机的参数,自动测定编码器零位,有些则能自动进行振动抑止。将电子齿轮、电子凸轮、同步跟踪、插补运动等控制功能和驱动结合在一起,对于伺服用户来说,则提供了更好的体验。拓展知识(7)网络化和模块化。将现场总线和工业以太网技术,甚至无线网络技