第1页,共27页,星期日,2025年,2月5日普通高等学校“十一五”国家级规划教材?大学数学?系列教材线性代数吉林大学?大学数学?系列教材编委会主编:陈殿友术洪亮戴天时2010.9第2页,共27页,星期日,2025年,2月5日绪论课程的性质线性代数是数学的一个分支,是数学的基础理论课之一。它既是学习数学的必修课,也是学习其他专业课的必修课。内容与任务线性代数是研究有限维线性空间及其线性变换的基本理论,包括矩阵及矩阵的初等变换、方阵的行列式、可逆矩阵的逆矩阵、线性方程组与向量组的线性相关性、相似矩阵及二次型等内容。既有一定的理论推导、又有大量的繁杂运算。有利于培养学生逻辑思维能力、分析问题和动手解决问题的能力。第3页,共27页,星期日,2025年,2月5日用途与特点线性代数理论不仅为学习后续课程奠定必要的数学基础,而且在工农业生产和国防技术中有着广泛的应用,是理工科大学生的一门重要的数学基础课。该课程的特点是:公式多,式子大,符号繁,但规律性强,课程内容比较抽象,需要学生具备一定的抽象思维能力,逻辑推理能力,分析问题能力和动手解决实际问题的能力。学习与要求为学好这门课程,要求学生要认真上好每一节课深刻理解每一节课的基本理论,熟练掌握每一节课的重点内容,熟练运用知识点解题,能够收到举一反三,触类旁通的效果。第4页,共27页,星期日,2025年,2月5日第一章矩阵的运算与初等变换矩阵是代数学中最重要的基本概念之一,是代数学研究的主要对象,也是数学许多分支研究及应用的重要工具,它贯穿于线性代数的各个部分。在很多领域中的一些数量关系都可以用矩阵来描述。本章主要介绍矩阵的概念、性质和运算。并把向量视为特殊的矩阵,自然地引进向量的概念及其线性运算。还将介绍矩阵的初等变换及分块矩阵等相关知识,为今后的学习打下扎实的理论基础。机动目录上页下页返回结束第一章第5页,共27页,星期日,2025年,2月5日教学目的:通过本章的教学使学生了解矩阵的概念,掌握矩阵的运算,认识矩阵在线性代数学中的地位与作用,为今后的学习打好基础.教学要求:理解矩阵的概念,熟练掌握矩阵的各种运算,会用矩阵解决各种实际问题.教学重点:正确理解矩阵的概念,熟练掌握矩阵的各种运算.教学难点:矩阵的乘法运算与矩阵的初等变换.分块矩阵,特别是分块矩阵的乘法运算.教学时间:6学时.机动目录上页下页返回结束第6页,共27页,星期日,2025年,2月5日1.矩阵的引出考察线性方程组隐去未知量和等号,分离出各未知量的系数,一般地,我们有如下的定义。§1矩阵与向量的概念1.1矩阵的概念机动目录上页下页返回结束第7页,共27页,星期日,2025年,2月5日定义1.1由m×n个数排成m行n列的数表叫做m行n列的矩阵,或称m×n矩阵。2.矩阵的定义表示法:①A、B、C、E等;②Am×n,Bs×r等;③A=(aij)或A=(aij)m×n等。机动目录上页下页返回结束第8页,共27页,星期日,2025年,2月5日3.几种矩阵①同型矩阵:行数和列数都分别相等的矩阵.②相等矩阵:同型矩阵、对应元素相等.③零矩阵:m×n个元素全为零.机动目录上页下页返回结束④行矩阵:⑤列矩阵:第9页,共27页,星期日,2025年,2月5日机动目录上页下页返回结束⑥n阶方阵:⑦n阶单位阵:第10页,共27页,星期日,2025年,2月5日4.矩阵的应用例1.某厂向三个商店发送四种产品,其发送的数量和单价及单件的重量都可用矩阵来刻划.若用aij表示为工厂向第i店发送第j种产品数量,则矩阵表示了工厂向三个商店发送四种产品的数量.机动目录上页下页返回结束第11页,共27页,星期日,2025年,2月5日若用bi1表示第i种产品的单价,bi2表示第i种产品的单件重量,则着四件产品的单价即单件重量也可用矩阵表示为机动目录上页下页返回结束第12页,共27页,星期日,2025年