Ag的光电子能谱图(MgK?激发)第30页,共50页,星期日,2025年,2月5日二、X射线光电子能谱仪主要组成部分:X光源(激发源),样品室,电子能量分析器和信息放大、记录(显示)系统等组成。(X射线)光电子能谱仪方框图第31页,共50页,星期日,2025年,2月5日三、X射线光电子能谱分析与应用1.元素(及其化学状态)定性分析方法:以实测光电子谱图与标准谱图相对照,根据元素特征峰位置(及其化学位移)确定样品(固态样品表面)中存在哪些元素(及这些元素存在于何种化合物中)。常用Perkin-Elmer公司的X射线光电子谱手册定性分析原则上可以鉴定除氢、氦以外的所有元素。分析时首先通过对样品(在整个光电子能量范围)进行全扫描,以确定样品中存在的元素;然后再对所选择的峰峰进行窄扫描,以确定化学状态。第32页,共50页,星期日,2025年,2月5日X射线光电子标准谱图示例第33页,共50页,星期日,2025年,2月5日应用实例下图为已标识的(C3H7)4NS2PF2的X射线光电子谱图。由图可知,除氢以外,其它元素的谱峰均清晰可见。图中氧峰可能是杂质峰,或说明该化合物已部分氧化。第34页,共50页,星期日,2025年,2月5日注意定性分析时,必须注意识别伴峰和杂质、污染峰(如样品被CO2、水分和尘埃等沾污,谱图中出现C、O、Si等的特征峰)。定性分析时一般利用元素的主峰(该元素最强最尖锐的特征峰)。显然,自旋-轨道分裂形成的双峰结构情况有助于识别元素。特别是当样品中含量少的元素的主峰与含量多的另一元素非主峰相重叠时,双峰结构是识别元素的重要依据。第35页,共50页,星期日,2025年,2月5日第1页,共50页,星期日,2025年,2月5日什么是电子能谱分析法?电子能谱分析法是采用单色光源(如X射线、紫外光)或电子束去照射样品,使样品中电子受到激发而发射出来,然后测量这些电子的产额(强度)对其能量的分布,从中获得有关信息的一类分析方法。本章主要介绍俄歇电子能谱法(AES)X射线光电子能谱法(XPS)紫外光电子能谱法(UPS)第2页,共50页,星期日,2025年,2月5日§13.1俄歇电子能谱法俄歇电子能谱法是用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检测俄歇电子的能量和强度,从而获得有关材料表面化学成分和结构的信息的方法。第3页,共50页,星期日,2025年,2月5日一、基本原理前面已描述了原子中的电子跃迁及其俄歇电子的发射过程。俄歇电子的激发方式虽然有多种(如X射线、电子束等),但通常主要采用一次电子激发。因为电子便于产生高束流,容易聚焦和偏转。俄歇电子的能量和入射电子的能量无关,只依赖于原子的能级结构和俄歇电子发射前它所处的能级位置。第4页,共50页,星期日,2025年,2月5日1.俄歇电子产额俄歇电子产额或俄歇跃迁几率决定俄歇谱峰强度,直接关系到元素的定量分析。俄歇电子与特征X射线是两个互相关联和竞争的发射过程。对同一K层空穴,退激发过程中荧光X射线与俄歇电子的相对发射几率,即荧光产额(?K)和俄歇电子产额满足=1-?K第5页,共50页,星期日,2025年,2月5日由图可知,对于K层空穴Z19,发射俄歇电子的几率在90%以上;随Z的增加,X射线荧光产额增加,而俄歇电子产额下降。Z33时,俄歇发射占优势。俄歇电子产额与原子序数的关系第6页,共50页,星期日,2025年,2月5日俄歇分析的选择通常对于Z≤14的元素,采用KLL俄歇电子分析;14Z42的元素,采用LMM俄歇电子较合适;Z42时,以采用MNN和MNO俄歇电子为佳。第7页,共50页,星期日,2025年,2月5日为什么说俄歇电子能谱分析是一种表面分析方法且空间分辨率高?大多数元素在50~1000eV能量范围内都有产额较高的俄歇电子,它们的有效激发体积(空间分辨率)取决于入射电子束的束斑直径和俄歇电子的发射深度。能够保持特征能量(没有能量损失)而逸出表面的俄歇电子,发射深度仅限于表面以下大约2nm以内,约相当于表面几个原子层,且发射(逸出)深度与俄歇电子的能量以及样品材料有关。在这样浅的表层内逸出俄歇电子时,入射电子束的侧向扩展几乎尚未开始,故其空间分辨率直接由入射电子束的直径决定。第8页,共50页,星期日,2025年,2月5日2.直接谱与微分谱直接谱:俄歇电子强度[密度(电子数)]N(E)对其能量E的分布[N(E)-E]。微分谱:由直接谱微分而来,是dN(E)/dE对E的