线性代数试题及答案
单项选择题(每题2分,共10题)
1.设\(A\)是\(n\)阶方阵,\(\vertA\vert=0\),则()
A.\(A\)的列向量组线性无关
B.\(A\)必有一个列向量可由其余列向量线性表示
C.\(A\)是可逆矩阵
D.\(A\)的行向量组线性无关
2.设矩阵\(A=\begin{pmatrix}12\\34\end{pmatrix}\),则\(A\)的伴随矩阵\(A^{}\)为()
A.\(\begin{pmatrix}4-2\\-31\end{pmatrix}\)
B.\(\begin{pmatrix}42\\31\end{pmatrix}\)
C.\(\begin{pmatrix}1-2\\-34\end{pmatrix}\)
D.\(\begin{pmatrix}12\\34\end{pmatrix}\)
3.设\(n\)阶方阵\(A\)与\(B\)相似,则()
A.\(A\)与\(B\)有相同的特征值和特征向量
B.\(A\)与\(B\)都相似于一个对角矩阵
C.\(\vertA\vert=\vertB\vert\)
D.\(A-\lambdaE\)与\(B-\lambdaE\)相等
4.向量组\(\alpha_1=(1,0,0)\),\(\alpha_2=(0,1,0)\),\(\alpha_3=(0,0,1)\),\(\alpha_4=(1,1,1)\)的极大线性无关组是()
A.\(\alpha_1,\alpha_2,\alpha_3\)
B.\(\alpha_1,\alpha_2,\alpha_4\)
C.\(\alpha_2,\alpha_3,\alpha_4\)
D.\(\alpha_1,\alpha_3,\alpha_4\)
5.设\(A\)为\(m\timesn\)矩阵,齐次线性方程组\(Ax=0\)有非零解的充分必要条件是()
A.\(A\)的列向量组线性相关
B.\(A\)的列向量组线性无关
C.\(A\)的行向量组线性相关
D.\(A\)的行向量组线性无关
6.设矩阵\(A\)满足\(A^2-A-2E=0\),则\(A^{-1}\)为()
A.\(A-E\)
B.\(\frac{1}{2}(A-E)\)
C.\(A+E\)
D.\(\frac{1}{2}(A+E)\)
7.若矩阵\(A\)与\(B\)等价,则()
A.\(A\)与\(B\)相等
B.\(r(A)=r(B)\)
C.\(A\)与\(B\)相似
D.\(A\)与\(B\)合同
8.设\(A\)是\(n\)阶正交矩阵,则()
A.\(\vertA\vert=1\)
B.\(\vertA\vert=-1\)
C.\(\vertA\vert^2=1\)
D.\(A^2=E\)
9.二次型\(f(x_1,x_2)=x_1^2+4x_1x_2+x_2^2\)的矩阵为()
A.\(\begin{pmatrix}12\\21\end{pmatrix}\)
B.\(\begin{pmatrix}14\\41\end{pmatrix}\)
C.\(\begin{pmatrix}11\\41\end{pmatrix}\)
D.\(\begin{pmatrix}10\\41\end{pmatrix}\)
10.设\(A\)是\(n\)阶方阵,\(\lambda\)是\(A\)的一个特征值,则\(\lambda\)满足方程()
A.\(\vertA-\lambdaE\vert=0\)
B.\(\vertA+\lambdaE\vert=0\)
C.\(A\lambda=E\)
D.\(\lambdaA=E\)
多项选择题(每题2分,共10题)
1.下列关于矩阵运算的说法正确的是()
A.矩阵加法满足交换律
B.矩阵乘法满足交换律
C.\((AB)^T=B^TA^T\)
D.\(k(AB)=(kA)B=A(kB)\)(\(k\)为常数)
2.设\(A\)为\(n\)阶方阵,下列命题正确的是()
A.若\(A\)可逆,则