答案第=page11页,共=sectionpages22页
10.3频率与概率
10.3频率与概率
10.3.1频率的稳定性
例1新生婴儿性别比是每100名女婴对应的男婴数.通过抽样调查得知,我国2014年、2015年出生的婴儿性别比分别为115.88和113.51.
(1)分别估计我国2014年和2015年男婴的出生率(新生儿中男婴的比率,精确到0.001);
(2)根据估计结果,你认为“生男孩和生女孩是等可能的”这个判断可靠吗?
分析:根据“性别比”的定义和抽样调查结果,可以计算男婴出生的频率;由频率的稳定性,可以估计男婴的出生率.
解:(1)2014年男婴出生的频率为,
2015年男婴出生的频率为.
由此估计,我国2014年男婴出生率约为0.537,2015年男婴出生率约为0.532.
(2)由于调查新生儿人数的样本非常大,根据频率的稳定性,上述对男婴出生率的估计具有较高的可信度.因此,我们有理由怀疑“生男孩和生女孩是等可能的”的结论.
例2一个游戏包含两个随机事件A和B,规定事件A发生则甲获胜,事件B发生则乙获胜.判断游戏是否公平的标准是事件A和B发生的概率是否相等.
在游戏过程中甲发现:玩了10次时,双方各胜5次;但玩到1000次时,自己才胜300次,而乙却胜了700次.据此,甲认为游戏不公平,但乙认为游戏是公平的.你更支持谁的结论?为什么?
解:当游戏玩了10次时,甲、乙获胜的频率都为0.5;当游戏玩了1000次时,甲获胜的频率为0.3,乙获胜的频率为0.7.根据频率的稳定性,随着试验次数的增加,频率偏离概率很大的可能性会越来越小.相对10次游戏,1000次游戏时的频率接近概率的可能性更大,因此我们更愿意相信1000次时的频率离概率更近.而游戏玩到1000次时,甲、乙获胜的频率分别是0.3和0.7,存在很大差距,所以有理由认为游戏是不公平的.因此,应该支持甲对游戏公平性的判断.
练习
1.判断下列说法是否正确,并说明理由:
(1)抛掷一枚硬币正面朝上的概率为0.5,则抛掷两次硬币,一定是一次正面朝上,一次反面朝上;
(2)抛掷一枚质地均匀的硬币10次,结果是4次正面朝上,所以事件“正面朝上”的概率为0.4;
(3)当试验次数很大时,随机事件发生的频率接近其概率;
(4)在一次试验中,随机事件可能发生也可能不发生,所以事件发生和不发生的概率各是0.5.
2.用掷两枚硬币做胜负游戏,规定:两枚硬币同时出现正面或同时出现反面算甲胜,一个正面、一个反面算乙胜.这个游戏公平吗?
3.据统计ABO血型具有民族和地区差异.在我国H省调查了30488人,四种血型的人数如下:
血型
A
B
O
AB
人数/人
7704
10765
8970
3049
频率
(1)计算H省各种血型的频率并填表(精确到0.001);
(2)如果从H省任意调查一个人的血型,那么他是O型血的概率大约是多少?
4.分别举出一个生活中概率很小和很大的例子.
10.3.2随机模拟
例3从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月……十二月是等可能的.设事件“至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件A发生的概率.
解:方法1根据假设,每个人的出生月份在12个月中是等可能的,而且相互之间没有影响,所以观察6个人的出生月份可以看成可重复试验.
因此,可以构建如下有放回摸球试验进行模拟:在袋子中装人编号为1,2,…,12的12个球,这些球除编号外没有什么差别.有放回地随机从袋中摸6次球,得到6个数代表6个人的出生月份,这就完成了一次模拟试验.如果这6个数中至少有2个相同,表示事件A发生了.重复以上模拟试验20次,就可以统计出事件A发生的频率.
方法2利用电子表格软件模拟试验.在,,,,,单元格分别输入“”,得到6个数,代表6个人的出生月份,完成一次模拟试验.选中,,,,,单元格,将鼠标指向右下角的黑点,按住鼠标左键拖动到第20行,相当于做20次重复试验.统计其中有相同数的频率,得到事件A的概率的估计值.
表10.3-4是20次模拟试验的结果.事件A发生了14次,事件A的概率估计值为0.70,与事件A的概率(约0.78)相差不大.
例4在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.
分析:奥运会羽毛球比赛规则是3局2胜制,甲获得冠军的结果可能是或.显然,甲连胜2局或在前2局中赢一局输一局,并赢得第3局的概率,与打满3局,甲胜2局或3局的概率相同.每局比赛甲可能胜,也可能负,3局比赛所有可能结果有8种,但是每个结果不是等可能出现的,因此不是古典概型,可以用计算机模拟比