网络题库答案及解析高中
一、单项选择题(每题2分,共10题)
1.函数\(y=\log_{2}(x+1)\)的定义域是()
A.\((-1,+\infty)\)B.\((-\infty,-1)\)C.\((0,+\infty)\)D.\(R\)
2.已知向量\(\overrightarrow{a}=(1,2)\),\(\overrightarrow{b}=(-1,m)\),若\(\overrightarrow{a}\parallel\overrightarrow{b}\),则\(m\)的值为()
A.2B.-2C.\(\frac{1}{2}\)D.\(-\frac{1}{2}\)
3.等差数列\(\{a_{n}\}\)中,\(a_{1}=1\),\(a_{3}=5\),则\(a_{5}\)等于()
A.9B.10C.11D.12
4.函数\(y=\sin(2x+\frac{\pi}{3})\)的最小正周期是()
A.\(\pi\)B.\(2\pi\)C.\(\frac{\pi}{2}\)D.\(\frac{\pi}{4}\)
5.直线\(3x-4y+5=0\)的斜率是()
A.\(\frac{3}{4}\)B.\(-\frac{3}{4}\)C.\(\frac{4}{3}\)D.\(-\frac{4}{3}\)
6.已知\(\alpha\)是第二象限角,\(\sin\alpha=\frac{3}{5}\),则\(\cos\alpha\)的值为()
A.\(\frac{4}{5}\)B.\(-\frac{4}{5}\)C.\(\frac{3}{4}\)D.\(-\frac{3}{4}\)
7.抛物线\(y^{2}=8x\)的焦点坐标是()
A.\((2,0)\)B.\((-2,0)\)C.\((0,2)\)D.\((0,-2)\)
8.若\(a\gtb\gt0\),则下列不等式成立的是()
A.\(\frac{1}{a}\gt\frac{1}{b}\)B.\(a^{2}\ltb^{2}\)C.\(\log_{2}a\gt\log_{2}b\)D.\(a^{\frac{1}{2}}\ltb^{\frac{1}{2}}\)
9.已知\(x\),\(y\)满足约束条件\(\begin{cases}x+y\geq1\\x-y\leq1\\y\leq1\end{cases}\),则\(z=2x+y\)的最大值为()
A.3B.4C.5D.6
10.从\(1\),\(2\),\(3\),\(4\),\(5\)这\(5\)个数中任取\(2\)个数,则这\(2\)个数之和为偶数的概率是()
A.\(\frac{1}{5}\)B.\(\frac{2}{5}\)C.\(\frac{3}{5}\)D.\(\frac{4}{5}\)
二、多项选择题(每题2分,共10题)
1.下列函数中,是偶函数的有()
A.\(y=x^{2}\)B.\(y=\cosx\)C.\(y=\ln(x^{2}+1)\)D.\(y=2^{x}\)
2.已知\(a\),\(b\),\(c\)为实数,则下列说法正确的是()
A.若\(a\gtb\),则\(ac^{2}\gtbc^{2}\)
B.若\(a\gtb\),\(c\gtd\),则\(a-c\gtb-d\)
C.若\(a\gtb\gt0\),则\(\frac{1}{a}\lt\frac{1}{b}\)
D.若\(a\gtb\),\(c\gt0\),则\(ac\gtbc\)
3.关于直线方程,下列说法正确的是()
A.直线\(y=kx+b\)(\(k\)为斜率,\(b\)为截距)
B.过点\((x_{0},y_{0})\)且斜率为\(k\)的直线方程为\(y-y_{0}=k(x-x_{0})\)
C.直线\(Ax+By+C=0\)(\(A\)、\(B\)不同时为\(0\))的斜率为\(-\frac{A}{B}\)
D.两平行直线\(Ax+By+C_{1}=0\)与\(Ax+By+C_{2}=0\)间的距离为\(\frac{\vertC_{1}-C_{2}\vert}{\sqrt{A^{2}+B^{2}}}\)
4.下列