2024届黑龙江省鸡西市达标名校中考一模数学试题
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.若点都是反比例函数的图象上的点,并且,则下列各式中正确的是(()
A. B. C. D.
2.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=()
A.50° B.40° C.30° D.20°
3.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()
A. B.2 C. D.2
4.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()
A.垂线段最短 B.经过一点有无数条直线
C.两点之间,线段最短 D.经过两点,有且仅有一条直线
5.某圆锥的主视图是一个边长为3cm的等边三角形,那么这个圆锥的侧面积是()
A.4.5πcm2 B.3cm2 C.4πcm2 D.3πcm2
6.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为
A.60元B.70元C.80元D.90元
7.一次函数的图象不经过()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.的相反数是()
A. B.2 C. D.
9.如图,与∠1是内错角的是()
A.∠2B.∠3
C.∠4D.∠5
10.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()
A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+5
二、填空题(共7小题,每小题3分,满分21分)
11.如图,在平面直角坐标系xOy中,△ABC可以看作是△DEF经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由△DEF得到△ABC的过程____.
12.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.
13.让我们轻松一下,做一个数字游戏:
第一步:取一个自然数,计算得;
第二步:算出的各位数字之和得,计算得;
第三步:算出的各位数字之和得,再计算得;
依此类推,则____________
14.若与是同类项,则的立方根是.
15.若m+=3,则m2+=_____.
16.将161000用科学记数法表示为1.61×10n,则n的值为________.
17.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.
三、解答题(共7小题,满分69分)
18.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
类别
频数(人数)
频率
小说
0.5
戏剧
4
散文
10
0.25
其他
6
合计
1
根据图表提供的信息,解答下列问题:八年级一班有多少名学生?请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.
19.(5分)如图,在平面直角坐标系xOy中,函数()的图象经过点,AB⊥x轴于点B,点C与点A关于原点O对称,CD⊥x轴于点D,△ABD的面积为8.
(1)求m,n的值;
(2)若直线(k≠0)经过点C,且与x轴,y轴的交点分别为点E,F,当时,求点F的坐标.
20.(8分)计算:解方程:
21.(10分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线D