4.4.3不同函数增长的差异
(人教A版普通高中教科书数学必修第一册第四章)
深圳第二外国语学校焦凤爱
一、教学目标
1.在信息技术的辅助下,了解指数函数、对数函数、一次函数的增长差异;
2.通过图象和表格数形结合地体现各类函数间增长变化的差异,了解“对数增长”“直线上升”“指数爆炸”的含义,提升对三类函数的认识;
3.在认识函数增长差异的过程中,发展数学运算、逻辑推理和数学建模的素养.
二、教学重难点
1.在信息技术的辅助下,直观了解“对数增长”“直线上升”“指数爆炸”的含义;
2.几种增长函数模型的应用.
三、教学过程
1.情境引入,复习回顾
问题1:在我们学习过的一次函数、二次函数、反比例函数、幂函数、指数函数、对数函数中哪些函数在定义域上是增函数?
【预设的答案】
【设计意图】通过图像可以看到,一次函数、指数函数以及对数函数的增长方式存在很大的差异,为接下来研究这三类不同函数增长方式的差异做铺垫.
2.问题探究,学以致用
虽然它们都是增函数,但增长方式存在很大差异,这种差异正是不同类型现实问题具有不同增长规律的反映.
探究一:
(2)借助信息技术,在同一直角坐标系内列表、描点作图如下:
问题2:观察这两个函数图象及其增长方式,你有什么发现?
【预设的答案】
问题3:请大家想象一下,取更大的值,在更大的范围内两个函数图象的关系?
【预设的答案】
【设计意图】通过画出特殊的指数函数和幂函数的图形,观察归纳出两类函数增长的差异和特点,发展学生逻辑推理,数学抽象、数学运算等核心素养.
例1.三个变量随变量变化的数据如下表:
其中关于呈指数增长的变量是.
【设计意图】通过练习巩固所学知识,巩固对函数增长差异性的认识,增强学生的直观想象、数学抽象、逻辑推理的核心素养.
探究二:
以函数与为例研究对数函数、一次函数增长方式的差异.
分析:(1)在区间(∞,0)上,对数函数没意义,一次函数值恒小于0,所以研究在区间(0,+∞)上它们的增长差异.
(2)借助信息技术,在同一直角坐标系内列表、描点作图如下:
问题3:观察这两个函数图象及其增长方式,你有什么发现?
【预设的答案】虽然函数与在(0,+∞)上都是单调递增,但它们的增长速度存在明显差异.在(0,+∞)上增长速度不变,在(0,+∞)上的增长速度在变化.随着的增大,的图象离x轴越来越远,而函数的图象越来越平缓,就像与轴平行一样.
【预设的答案】
【设计意图】通过画出特殊的对数函数和幂函数的图形,观察归纳出两类函数增长的差异和特点,发展学生逻辑推理,数学抽象、数学运算等核心素养.
(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;
当时,;当或时,.
【设计意图】通过练习巩固所学知识,巩固对函数增长差异性的认识,增强学生的直观想象、数学抽象、逻辑推理的核心素养.
探究三:
类比上述过程,
(3)讨论交流“直线上升”“对数增长”“指数爆炸”的含义.
直线上升:增长速度不变,是一个固定的值;
对数增长:增长速度越来越慢,图象越来越平缓,就像与轴平行一样;
指数爆炸:增长速度越来越快,以相同倍数增加,图象越来越陡,最终就像与轴垂直一样.
例3.下列函数中随的增大而增大且速度最快的是().
【预设的答案】结合指数函数、对数函数及一次函数的图象变化趋势可知A正确.
【设计意图】通过练习巩固所学知识,巩固对函数增长差异性的认识,增强学生的直观想象、数学抽象、逻辑推理的核心素养。
【设计意图】通过练习巩固所学知识,巩固对函数增长差异性的认识,增强学生的直观想象、数学抽象、逻辑推理的核心素养.
课堂小结
【设计意图】学生根据课堂学习,自主总结知识要点及运用的思想方法并注意总结自己在学习中的易错点.