第01讲平面向量的概念及线性运算
目录TOC\o1-2\h\z\u
01考情透视·目标导航 2
02知识导图·思维引航 3
03考点突破·题型探究 4
知识点1:向量的有关概念 4
知识点2:向量的线性运算 4
知识点3:平面向量基本定理和性质 5
知识点4:平面向量的坐标表示及坐标运算 7
解题方法总结 7
题型一:平面向量的基本概念 8
题型二:平面向量的线性运算及求参数问题 9
题型三:共线定理及其应用 10
题型四:平面向量基本定理、交叉分解定理及应用 12
题型五:平面向量的直角坐标运算 15
题型六:向量共线的坐标表示 16
04真题练习·命题洞见 16
05课本典例·高考素材 17
06易错分析·答题模板 19
易错点:忽视平面向量基本定理的使用条件 19
答题模板:用基底表示向量 19
考点要求
考题统计
考情分析
(1)向量的有关概念
(2)向量的线性运算和向量共线定理
(3)平面向量基本定理和性质
(4)平面向量的坐标表示及坐标运算
2024年I卷第3题,5分
2024年甲卷(理)第9题,5分2023年北京卷第3题,5分
2022年I卷第3题,5分
2021年乙卷(文)第13题,5分
2022年乙卷(文)第3题,5分
通过对近5年高考试题分析可知,高考在本节以考查基础题为主,考查形式也较稳定,考查内容一般为平面向量基本定理与坐标运算,预计后面几年的高考也不会有大的变化.
复习目标:
(1)理解平面向量的意义、几何表示及向量相等的含义.
(2)掌握向量的加法、减法运算,并理解其几何意义及向量共线的含义.
(3)了解平面向量基本定理及其意义
(4)会用坐标表示平面向量的加法、减法与数乘运算
知识点1:向量的有关概念
(1)定义:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).
(2)向量的模:向量的大小,也就是向量的长度,记作.
(3)特殊向量:
①零向量:长度为0的向量,其方向是任意的.
②单位向量:长度等于1个单位的向量.
③平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:与任一向量平行.
④相等向量:长度相等且方向相同的向量.
⑤相反向量:长度相等且方向相反的向量.
【诊断自测】下列命题中,正确的是(????)
A.若,则 B.若,则
C.若,则 D.若,则
知识点2:向量的线性运算
(1)向量的线性运算
运算
定义
法则(或几何意义)
运算律
加法
求两个向量和的运算
三角形法则平行四边形法则
①交换律
②结合律
减法
求与的相反向量的和的运算叫做与的差
三角形法则
数乘
求实数与向量的积的运算
(1)
(2)当时,与的方向相同;当时,与的方向相同;
当时,
【注意】
(1)向量表达式中的零向量写成,而不能写成0.
(2)两个向量共线要区别与两条直线共线,两个向量共线满足的条件是:两个向量所在直线平行或重合,而在直线中,两条直线重合与平行是两种不同的关系.
(3)要注意三角形法则和平行四边形法则适用的条件,运用平行四边形法则时两个向量的起点必须重合,和向量与差向量分别是平行四边形的两条对角线所对应的向量;运用三角形法则时两个向量必须首尾相接,否则就要把向量进行平移,使之符合条件.
(4)向量加法和减法几何运算应该更广泛、灵活如:,,.
【诊断自测】(????)
A. B. C. D.
知识点3:平面向量基本定理和性质
1、共线向量基本定理
如果,则;反之,如果且,则一定存在唯一的实数,使.(口诀:数乘即得平行,平行必有数乘).
2、平面向量基本定理
如果和是同一个平面内的两个不共线向量,那么对于该平面内的任一向量,都存在唯一的一对实数,使得,我们把不共线向量,叫做表示这一平面内所有向量的一组基底,记为,叫做向量关于基底的分解式.
注意:由平面向量基本定理可知:只要向量与不共线,平面内的任一向量都可以分解成形如的形式,并且这样的分解是唯一的.叫做,的一个线性组合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理论依据,也是向量的坐标表示的基础.
推论1:若,则.
推论2:若,则.
3、线段定比分点的向量表达式
如图所示,在中,若点是边上的点,且(),则向量.在向量线性表示(运算)有关的问题中,若能熟练利用此结论,往往能有“化腐朽为神奇”之功效,建议熟练掌握.
D
D
A
C
B
4、三点共线定理
平面内三点A,B,C共线的充要条件是:存在实数,使,其中,为平面内一点.此定理在向量问题中经常用到,应熟练掌握.
A、B、C三点共线
存在唯一的实数,使得;
存在唯一的实数,使