概率论与数理统计考试题及答案
一、单项选择题(每题2分,共10题)
1.设\(P(A)=0.5\),\(P(B)=0.4\),\(P(A-B)=0.3\),则\(P(A\cupB)\)=()
A.0.6B.0.7C.0.8D.0.9
2.随机变量\(X\)服从参数为\(\lambda\)的泊松分布,且\(P(X=1)=P(X=2)\),则\(\lambda\)=()
A.1B.2C.3D.4
3.设随机变量\(X\)的概率密度为\(f(x)=\begin{cases}2x,0\ltx\lt1\\0,其他\end{cases}\),则\(P(X\leq0.5)\)=()
A.0.25B.0.5C.0.75D.1
4.设\(X\)和\(Y\)相互独立,\(X\simN(1,4)\),\(Y\simN(2,9)\),则\(Z=X-Y\)服从的分布是()
A.\(N(-1,-5)\)B.\(N(-1,13)\)C.\(N(3,13)\)D.\(N(3,5)\)
5.样本\(X_1,X_2,\cdots,X_n\)来自总体\(X\simN(\mu,\sigma^2)\),则下列统计量中可作为\(\sigma^2\)的无偏估计量的是()
A.\(\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2\)B.\(\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2\)
C.\(\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2\)D.\(\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\mu)^2\)
6.设\(A\),\(B\)为两个随机事件,且\(P(B)\gt0\),\(P(A|B)=1\),则必有()
A.\(P(A\cupB)=P(A)\)B.\(A\supsetB\)C.\(P(A)=P(B)\)D.\(P(AB)=P(A)\)
7.若随机变量\(X\)的期望\(E(X)=2\),方差\(D(X)=4\),则\(E(X^2)\)=()
A.4B.8C.12D.16
8.设随机变量\(X\)的分布函数为\(F(x)=\begin{cases}0,x\lt0\\x^2,0\leqx\lt1\\1,x\geq1\end{cases}\),则\(X\)的概率密度\(f(x)\)为()
A.\(f(x)=\begin{cases}2x,0\ltx\lt1\\0,其他\end{cases}\)B.\(f(x)=\begin{cases}x^2,0\ltx\lt1\\0,其他\end{cases}\)
C.\(f(x)=\begin{cases}2x,0\leqx\leq1\\0,其他\end{cases}\)D.\(f(x)=\begin{cases}x^2,0\leqx\leq1\\0,其他\end{cases}\)
9.设\(X_1,X_2,\cdots,X_n\)是来自总体\(X\)的样本,\(\overline{X}\)是样本均值,则\(D(\overline{X})\)=()
A.\(\frac{\sigma^2}{n}\)B.\(\sigma^2\)C.\(n\sigma^2\)D.\(\frac{\sigma^2}{n^2}\)
10.在假设检验中,原假设\(H_0\),备择假设\(H_1\),则犯第一类错误是指()
A.\(H_0\)为真,接受\(H_1\)B.\(H_0\)为假,接受\(H_1\)
C.\(H_0\)为真,拒绝\(H_0\)D.\(H_0\)为假,拒绝\(H_0\)
二、多项选择题(每题2分,共10题)
1.以下哪些是概率的基本性质()
A.\(0\leqP(A)\leq1\)B.\(P(\Omega)=1\)C.\(P(\varnothing)=0\)D.若\(A\subsetB\),则\(P(A)\leqP(B)\)
2.设随机变量\(X\)服从正态分布\(N(\m