概率论期末考试题及答案
单项选择题(每题2分,共10题)
1.设\(A\),\(B\)为两个事件,且\(P(A)=0.6\),\(P(B)=0.5\),\(P(AB)=0.3\),则\(P(A\cupB)\)=()
A.0.6B.0.7C.0.8D.0.9
2.若随机变量\(X\)服从参数为\(\lambda\)的泊松分布,则\(E(X)\)=()
A.\(\lambda\)B.\(\lambda^2\)C.\(1/\lambda\)D.\(\sqrt{\lambda}\)
3.设随机变量\(X\)的概率密度函数为\(f(x)=\begin{cases}2x,0\ltx\lt1\\0,其他\end{cases}\),则\(P(X\lt0.5)\)=()
A.0.25B.0.5C.0.75D.1
4.已知随机变量\(X\)和\(Y\)相互独立,且\(X\simN(1,4)\),\(Y\simN(2,9)\),则\(Z=X-Y\)的均值为()
A.-1B.1C.3D.-3
5.设\(X_1,X_2,\cdots,X_n\)是来自总体\(X\)的样本,\(X\simN(\mu,\sigma^2)\),则样本均值\(\overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_i\)服从()
A.\(N(\mu,\frac{\sigma^2}{n})\)B.\(N(\mu,\sigma^2)\)C.\(N(0,1)\)D.\(N(n\mu,n\sigma^2)\)
6.若事件\(A\)与\(B\)互斥,则\(P(AB)\)=()
A.0B.0.5C.1D.\(P(A)P(B)\)
7.设随机变量\(X\)的分布函数为\(F(x)\),则\(F(+\infty)\)=()
A.0B.0.5C.1D.不存在
8.随机变量\(X\)的方差\(D(X)\)表示()
A.\(X\)的取值范围B.\(X\)的平均取值
C.\(X\)取值的分散程度D.\(X\)取值的概率
9.已知\(P(A)=0.4\),\(P(B)=0.5\),\(A\)与\(B\)相互独立,则\(P(A\cupB)\)=()
A.0.7B.0.8C.0.9D.0.6
10.设总体\(X\)的均值为\(\mu\),方差为\(\sigma^2\),样本容量为\(n\),则样本方差\(S^2=\frac{1}{n-1}\sum_{i=1}^{n}(X_i-\overline{X})^2\)是()的无偏估计量。
A.\(\mu\)B.\(\sigma^2\)C.\(\mu^2\)D.\(\frac{\sigma^2}{n}\)
多项选择题(每题2分,共10题)
1.以下哪些是概率的基本性质()
A.\(0\leqP(A)\leq1\)B.\(P(\Omega)=1\)C.\(P(\varnothing)=0\)D.\(P(A\cupB)=P(A)+P(B)\)
2.设随机变量\(X\)服从正态分布\(N(\mu,\sigma^2)\),则以下说法正确的是()
A.图像关于\(x=\mu\)对称B.\(P(X=\mu)=0\)
C.\(\mu\)决定图像的位置D.\(\sigma\)决定图像的形状
3.下列哪些是离散型随机变量的概率分布的性质()
A.\(P(X=x_i)\geq0\)B.\(\sum_{i}P(X=x_i)=1\)
C.\(P(X\ltx)=\sum_{x_i\ltx}P(X=x_i)\)D.\(P(X=x)\)可以大于1
4.设\(A\),\(B\)为事件,则\(P(A-B)\)可以表示为()
A.\(P(A)-P(AB)\)B.\(P(A)-P(B)\)
C.\(P(A\overline{B})\)D.\(P(A)P(\overline{B})\)
5.对于随机变量\(X\)和\(Y\),以下哪些是衡量它们相关性的指标()
A.协方差\(Cov(X,Y)\)B.相关系数\(\rho_{XY}\)
C.方差\(D(X)\