3.1.1方程的根与函数的零点
(一)教学目标
1.知识与技能
(1)理解函数零点的意义,了解函数零点与方程根的关系.
(2)由方程的根与函数的零点的探究,培养转化化归思想和数形结合思想.
2.过程与方法
由一元二次方程的根与一元二次函数的图象与x轴的交点情况分析,导入零点的概念,引入方程的根与函数零点的关系,从而培养学生的转化化归思想和探究问题的能力.
3.情感、态度与价值观
在体验零点概念形成过程中,体会事物间相互转化的辨证思想,享受数学问题研究的乐趣.
(二)教学重点与难点
重点:理解函数零点的概念,掌握函数零点与方程根的求法.
难点:数形结合思想,转化化归思想的培养与应用.
(三)教学方法
在相对熟悉的问题情境中,通过学生自主探究,合作交流中完成的学习任务.尝试指导与自主学习相结合.
(四)教学过程
教学环节
教学内容
师生互动
设计意图
复习引入
观察下列三组方程与函数
方程
函数
x2–2x–3=0
y=x2–2x–3
x2–2x+1=0
y=x2–2x+1
x2–2x+3=0
y=x2–2x+3
利用函数图象探究方程的根与函数图象与x轴的交点之间的关系
师生合作
师:方程x2–2x–3=0的根为–1,3函数y=x2–2x–3与x轴交于点(–1,0)(3,0)
生:x2–2x+1=0有相等根为1.
函数y=x2–2x+1与x轴有唯一交点(1,0).
x2–2x+3=0没有实根
函数y=x2–2x+3与x轴无交点
以旧引新,导入课题
概念形成
1.零点的概念
对于函数y=f(x),称使y=f(x)=0的实数x为函数y=f(x)的零点
2.函数的零点与方程根的关系
方程f(x)=0有实数根函数
y=f(x)的图象与x轴有交点函数y=f(x)的零点
3.二次函数零点的判定
对于二次函数y=ax2+bx+c与二次方程ax2+bx+c,其判别式△=b2–4ac
判别
式
方程ax2+bx+c=0的根
函数y=ax2+bx+c的零点
△>0
两不相等实根
两个零点
△=0
两相等实根
一个零点
△<0
没有实根
0个零点
师:我们通俗地称函数与x轴交点的横坐标为函数的零点,请同学归纳零点的定义
师:考察函数①y=lgx
②y=lg2(x+1)③y=2x
④y=2x–2的零点
生:①y=lgx的零点是x=1
②y=lg2(x+1)的零点是x=0
③y=2x没有零点
④y=2x–2的零点是x=1
归纳总结
感知概念
分析特征
形成概念
概念深化
引导学生回答下列问题
①如何求函数的零点?
②零点与图象的关系怎样?
师生合作,学生口答,老师点评,阐述
生①零点即函数为零对应的自变量的值,零点即对应方程的根
②零点即函数图象与x轴交点的横坐标
③求零点可转化为求方程的根
以问题讨论代替老师的讲援
应用举例
练习1.求函数y=–x2–2x+3的零点,并指出y>0,y=0的x的取值范围
练习2.求函数y=x3–2x2–x+2的零点,并画出它的图象
练习3.利用函数图象判断下列方程有没有根,有几个根:(1)–x2+3x+5=0;(2)2x(x–2)=–3;
(3)x2=4x–4;
(4)5x2+2x=3x2+5.
学生自主尝试练习完成练习1、2、3
生:练习1解析:零点–3,1
x∈(–3,1)时y>0
时y<0
练习2解析:因为x3–2x2–x+2=x2(x–2)–(x–2)=(x–2)(x2–1)=(x–2)(x–1)(x+1),
所以已知函数的零点为–1,1,2.
3个零点把x轴分成4个区间:,[–1,1],[1,2],
在这4个区间内,取x的一些值(包括零点),列出这个函数的对应值表:
x
…
–1.5
–1
–0.5
0
0.5
1
1.5
2
2.5
…
y
…
–4.38
0
1.88
2
1.13
0
–0.63
0
2.63
…
在直角坐标系内描点连线,这个函数的图象如图所示
练习3解析:(1)令f(x)=–x2+3x+5,作出函数f(x)的图象,它与x轴有两个交点,所以方程–x2+3x+5=0有两个不相等的实数根.
(2)2x(x–2)=–3可化为2x2–4x+3=0
令f(x)=2x2–4x