基本信息
文件名称:2.3变量间的相关关系(一、二).doc
文件大小:455.88 KB
总页数:6 页
更新时间:2025-06-30
总字数:约3.95千字
文档摘要

2.3变量间的相互关系(一)、(二)

问题提出

1.函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系.

2.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?

3.这两个变量是有一定关系的,它们之间是一种不确定性的关系.类似于这样的两个变量之间的关系,有必要从理论上作些探讨,如果能通过数学成绩对物理成绩进行合理估计,将有着非常重要的现实意义.

知识探究(一):变量之间的相关关系

思考1:考察下列问题中两个变量之间的关系,想一想这些问题中两个变量之间的关系是函数关系吗?

(1)商品销售收入与广告支出经费;

(2)粮食产量与施肥量;

(3)人体内的脂肪含量与年龄.

思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?

你能举出类似的描述生活中两个变量之间的这种关系的成语吗?

思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?

自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系.

思考4:函数关系与相关关系之间的区别与联系.

函数关系中的两个变量间是一种确定性关系;相关关系是一种非确定性关系.

函数关系是一种因果关系而相关关系不一定是因果关系,也可能是伴随关系.

3.函数关系与相关关系之间有着密切联系,在一定条件下可以互相转化.

例1在下列两个变量的关系中,哪些是相关关系?

①正方形边长与面积之间的关系;

②作文水平与课外阅读量之间的关系;

③人的身高与年龄之间的关系;

④降雪量与交通事故的发生率之间的关系.

练习1.已知下列变量,它们之间的关系是函数关系的有①,是相关关系的有②③.

①已知二次函数y=ax2+bx+c,其中a、c是已知常数,取b为自变量,因变量是这个函数的判别式△=b2-4ac;

②光照时间和果树亩产量;

③每亩施用肥料量和粮食产量.

知识探究(二):散点图

【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:

其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数.

思考1:观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?

思考2:以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?

思考3:上图叫做散点图,你能描述一下散点图的含义吗?

在平面直角坐标系中,表示具有相关关系的两个变量的一组数据图形,称为散点图.

思考4:观察散点图的大致趋势,人的年龄的与人体脂肪含量具有什么相关关系?

思考5:在上面的散点图中,这些点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.一般地,如果两个变量成正相关,那么这两个变量的变化趋势如何?

思考6:如果两个变量成负相关,从整体上看这两个变量的变化趋势如何?其散点图有什么特点?

一个变量随另一个变量的变大而变小,散点图中的点散布在从左上角到右下角的区域

思考7:你能列举一些生活中的变量成正相关或负相关的实例吗?

例2以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:

画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关.

练习2.今有一组试验数据如下表所示:现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是(C)

A.y=log2xB.y=2xC.y=(x2-1)/2D.y=2x-2

问题提出

1.两个变量之间的相关关系的含义如何?成正相关和负相关的两个相关变量的散点图分别有什么特点?

自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系.

正相关的散点图中的点散布在从左下角到右上角的区域,负相关的散点图中的点散布在从左上角到右下角的区域

2.观察人体的脂肪含量百分比和年龄的样本数据的散点图,这两个相关变量成正相关.我们需要进一步考虑的问题是,当人的年龄增加时,体内脂肪含量到底是以什么方式增加呢?对此,我们从理论上作些研究.

知识探究(三):回归直线

思考1