基本信息
文件名称:2024广元中核职业技术学院单招《数学》复习提分资料及参考答案详解(培优).docx
文件大小:914.38 KB
总页数:27 页
更新时间:2025-07-01
总字数:约3.62千字
文档摘要

广元中核职业技术学院单招《数学》复习提分资料

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题70分)

一、单选题(30小题,每小题2分,共计60分)

1、

A.A

B.B

C.C

D.D

答案:C

解析:根据正弦的定义解得即可.

解:sinA=BC/AB=4/5.

故选:C

2、

A.A

B.B

C.C

D.D

答案:D

解析:

3、

A.A

B.B

C.C

D.D

答案:B

解析:

4、

A.A

B.B

C.C

D.D

答案:C

解析:题目给出幂函数f(x)经过点(2,8),即f(2)=8。幂函数的形式一般为f(x)=ax^b。将点(2,8)代入幂函数方程,得到8=a*2^b。通过求解这个方程,可以找到a和b的值。假设b=3,那么a=8/(2^3)=8/8=1,因此f(x)=x^3。代入x=3,得到f(3)=3^3=27。所以,正确答案是C。

5、

A.A

B.B

C.C

D.D

答案:A

解析:

6、

A.A

B.B

C.C

D.D

答案:D

解析:

7、

A.A

B.B

C.C

D.D

答案:D

解析:

8、

A.A

B.B

C.C

D.D

答案:B

解析:

9、已知cosx=α,求sin(x+3π/2)=()

A.α

B.α/2

C.-α

D.2α

答案:C

解析:这道题考查三角函数的诱导公式。根据诱导公式,sin(x+3π/2)=-cosx。已知cosx=α,所以sin(x+3π/2)=-α。选项A是cosx的值;选项B与已知条件和公式均无关;选项D也不符合诱导公式的计算结果。综上,答案选C。

10、如图:

A.A

B.B

C.C

D.D

答案:D

解析:如图:

11、如图:

A.A

B.B

C.C

D.D

答案:C

解析:如图:

12、关于x的一元一次方程ax=3,下列对于该方程的解的说法中,正确的是()

A.该方程一定有实数解

B.该方程一定没有实数解

C.该方程不一定有实数解

D.上述说法都不对

答案:C

解析:这道题考查一元一次方程解的情况。在一元一次方程ax=3中,当a=0时,方程无解;当a≠0时,方程有唯一解x=3/a。所以对于该方程,其解的情况取决于a的值,不一定有实数解。

13、如图:

A.A

B.B

C.C

D.D

答案:D

解析:自然数集N包含所有非负整数,-3不是自然数,因此A错误。0是自然数,因此B错误。整数集Z包含所有整数,1/2不是整数,因此C错误。实数集R包含所有有理数和无理数,√5是无理数,属于实数集,因此D正确。

14、

A.A

B.B

C.C

D.D

答案:A

解析:

15、

A.A

B.B

C.C

D.D

答案:C

解析:

16、

A.A

B.B

C.C

D.D

答案:B

解析:

17、

A.-2,6

B.-3,4

C.3,4

D.-4,3

答案:D

解析:

18、在△ABC中,若最大的一个角的正弦值是1/2,则△ABC是()

A.锐角三角形

B.直角三角形

C.钝角三角形

D.等边三角形

答案:C

解析:这道题考查三角形内角的正弦值与三角形类型的关系。在三角形中,正弦值为1/2的角可能是30°或150°。最大角正弦值是1/2,若最大角为30°,不符合三角形内角和定理。所以最大角为150°,是钝角,因此△ABC是钝角三角形。

19、

A.A

B.B

C.C

D.D

答案:A

解析:

20、

A.A

B.B

C.C

D.D

答案:B

解析:

21、

A.A

B.B

C.C

D.D

答案:B

解析:

22、

A.A

B.B

C.C

D.D

答案:A

解析:

23、

A.A

B.B

C.C

D.D

答案:C

解析:

24、如图,直线l经过第二、三、四象限,l的解析式是y=(m—2)x+n,则m的取值范围在数轴上表示为()

A.A

B.B

C.C

D.D

答案:C

解析:分析根据一次函数图象与系数的关系得到m-2<0且n<0,解得m<2,然后根据数轴表示不等式的方法进行判断.

解:∵直线y=(m-2)x+n经过第二、三、四象限,

∴m-2<0且n<0,

∴m<2且n<0.

故选:C.

25、

A.A

B.B

C.C

D.D

答案:B

解析:

26、如图所