基本信息
文件名称:2025佳木斯职业学院单招《数学》复习提分资料及答案详解(夺冠系列).docx
文件大小:701.79 KB
总页数:24 页
更新时间:2025-07-03
总字数:约4.26千字
文档摘要

佳木斯职业学院单招《数学》复习提分资料

考试时间:90分钟;命题人:教研组

考生注意:

1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题70分)

一、单选题(30小题,每小题2分,共计60分)

1、

A.A

B.B

C.C

D.D

答案:B

解析:

2、

A.1

B.2

C.3

D.4

答案:B

解析:

3、下列命题中,错误的是()

A.经过一条直线和这条直线外的一点,有且只有一个平面

B.经过两条相交直线,有且只有一个平面

C.经过两条平行直线,有且只有一个平面

D.经过任意三点,有且只有一个平面

答案:D

解析:这道题考查平面的基本性质。根据公理,经过一条直线和直线外一点,必能确定一个平面,选项A正确;两条相交直线能确定一个平面,选项B正确;两条平行直线也能确定一个平面,选项C正确。而经过不共线的三点有且只有一个平面,若三点共线则有无数个平面,选项D错误。

4、下列各组角中,终边相同的是().

A.390°,690°

B.-330°,750°

C.480°,420°

D.3000°,-840°

答案:B

解析:这道题考查角的终边相同的概念。在平面几何中,终边相同的角相差360°的整数倍。-330°与750°相差360°×2=720°,所以它们终边相同。A选项两角相差300°,C选项两角相差60°,D选项两角相差2160°,均不符合终边相同的条件。综上,答案选B。

5、在平移过程中,对应线段()

A.互相垂直且相等

B.互相平行且相等

C.互相平行(或在同一条直线上)且相等

D.相等但不平行

答案:C

解析:这道题考查平移的性质。在平面几何中,平移不改变图形的形状和大小。平移后,对应线段的位置关系是互相平行(或在同一条直线上),长度关系是相等。A选项互相垂直不符合平移性质;B选项未提及在同一条直线上的情况;D选项相等但不平行也不正确。所以答案是C。

6、

A.A

B.B

C.C

D.D

答案:C

解析:偶函数条件f(-x)=f(x),C是反比例函数,在题中定义域属于增函数。

7、

A.A

B.B

C.C

D.D

答案:B

解析:

8、

A.A

B.B

C.C

D.D

答案:B

解析:两向量平行,所以2=-2m,m=-1,x=1*m=-1.

9、如图:

A.2047

B.1062

C.1023

D.532

答案:C

解析:如图:

10、直线y=-x+1的斜率为()

A.135°

B.45°

C.1

D.-1

答案:D

解析:这道题考查直线斜率的知识。直线的一般式为y=kx+b,其中k就是斜率。对于直线y=-x+1,其斜率k为-1。在数学中,斜率表示直线的倾斜程度,当直线方程为y=-x+1时,其斜率就是-1,所以答案选D。

11、

A.A

B.B

C.C

D.D

答案:C

12、如图:

A.A

B.B

C.C

D.D

答案:A

解析:抛物线$$y^2-4x$$的标准形式为$$y^2=4px$$,其中$$p=1$$。焦点坐标为$$(p,0)=(1,0)$$。以焦点$$(1,0)$$为圆心,且过坐标原点$$(0,0)$$的圆的半径为1。圆的方程为$$(x-1)^2+y^2=1$$。

13、

A.A

B.B

C.C

D.D

答案:A

解析:

14、若lga+lgb=0(其中a≠1,b≠1),则函数f(x)=a^x与g(x)=b^x的图像[]

A.关于直线y=x对称

B.关于x轴对称

C.关于y轴对称

D.关于原点对称

答案:C

解析:这道题考查函数的性质。因为lga+lgb=0,可得lg(ab)=0,即ab=1,所以b=1/a。函数f(x)=a^x,g(x)=(1/a)^x=a^(-x)。两个函数的自变量取值相反,函数值相同,所以它们的图像关于y轴对称。

15、

A.A

B.B

C.C

D.D

答案:A

解析:

16、若扇形圆心角为60°,半径为a,则内切圆与扇形面积之比为()

A.1∶2

B.1∶3

C.2∶3

D.3∶4

答案:C

解析:这道题考查扇形和内切圆面积的计算。扇形面积与圆心角和半径有关,内切圆半径可通过几何关系求得。扇形圆心角为60°,半