基本信息
文件名称:北师大版八年级数学上册6.1平均数与方差 课件(第1---2课时) .ppt
文件大小:4.06 MB
总页数:10 页
更新时间:2025-08-23
总字数:约3.33千字
文档摘要

学校篮球联赛开始了刘教练选我选我教练的烦恼刘教练到我班选拔一名篮球队员,刘教练对陈方楷和李霖东两名学生进行5次投篮测试,每人每次投10个球,下图记录的是这两名同学5次投篮中所投中的个数.队员第1次第2次第3次第4次第5次李霖东78889陈方楷1061068(1)请求出以上两组数据的平均数、众数;(3)若要选一个投篮稳定的队员,选谁更好?(2)用复式折线统计图表示上述数据;1.理解离差平方和、方差、标准差、组内离差平方和的意义.2.会计算一组简单数据的离差平方和、方差、标准差、组内离差平方和.甲与丁的射击成绩如图所示,他们的平均成绩都是8环,两个人的射击表现一样吗?你对甲、丁的射击表现有什么评价?离差平方和、方差与标准差知识点(1)你觉得谁发挥得更稳定?你的理由是什么?(2)你能设法通过计算说明两人的成绩的稳定程度吗?与同伴进行交流.在统计学里,数据的离散程度可以用离差平方和、方差或标准差等统计量来刻画.方差是各个数据与平均数之差的平方的平均数,即其中,是x1,x2,……,xn的平均数,s2是方差,而标准差就是方差的算术平方根.离差平方和是各个数据与它们平均数之差的平方和.即一般而言,一组数据的方差或标准差越小,这组数据就越稳定.例1:计算图中甲射击成绩的标准差(结果精确到0.01环)/次序例2:小明和小兵两人参加体育项目训练,近期的五次测试成绩如下表所示.谁的成绩较为稳定?为什么?测试次数12345小明1014131213小兵1111151411测试成绩测试次数12345求离差平方和小明每次测试成绩1014131213(每次成绩-平均成绩)25.762.560.360.160.369.2小兵每次测试成绩1111151411(每次成绩-平均成绩)21.961.966.762.561.9615.2****第六章数据的分析6.1平均数与方差(第1课时)1.掌握众数、算术平均数和加权平均数的概念,会求一组数据的众数、算术平均数和加权平均数.2.会用众数、算术平均数、加权平均数解决实际生活中的问题.在某次射击训练中,甲、乙、丙、丁四人的成绩如图所示.(1)观察统计图,甲的哪个射击成绩出现的次数最多?其他选手呢?(2)不计算,请你尝试判断谁的射击成绩最好。你是怎么判断的?(3)算一算,验证你的判断是否正确.一组数据中出现次数最多的那个数据叫作这组数据的众数.一组数据中所有数据之和除以这组数据的个数,就得到这组数据的算术平均数,简称平均数.平均数是刻画一组数据集中趋势的一项指标,反映了一组数据的“中心”.众数、算术平均数知识点1例1植树节到了,某单位组织职工开展植树竞赛,下图反映的是植树量与人数之间的关系.345678棵数121086420人数0请根据图中信息计算:(1)总共有多少人参加了本次活动?(2)总共植树多少棵?(3)平均每人植树多少棵?典例精析解:(1)参加本次活动的总人数是1+8+1+10+8+3+1=32(人)(2)总共植树3×8+4×1+5×10+6×8+7×3+8×1=155(棵).(3)平均每人植树(棵)345678棵数121086420人数0某班级为了解同学年龄情况,做了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个班级学生的平均年龄(结果取整数).解:这个班级学生的平均年龄为:所以,他们的平均年龄约为14岁.练一练在实际问题中,一组数据里的各个数据的“重要程度”未必相同.因而,在计算这组数据的平均数时,往往根据各个数据的“重要程度”赋一个“权”.一起来看看下面的例子加权平均数知识点2例2某校进行广播操比赛,评分包括以下几项(每项满分10分);服装统一、进退场有序、动作规范、动作整齐.其中三个班的成绩分别如下:班级评分项服装统一进退场有序动作规范动作整齐一班9898二班10978三班8989典例精析(1)如果将服装统一、进退场有序、动作规范、动作整齐这四项得分依次按10%,20%,30%,40%的比例计算各班的广播操比赛成绩,那么哪个班的成绩最高?解:一班的成绩为9×10%+8×20%+9×30%+8×40%=8.4(分).二班的成绩为10×10%+9