基本信息
文件名称:定积分的应用考试题目及答案.doc
文件大小:23.69 KB
总页数:7 页
更新时间:2025-09-09
总字数:约5.05千字
文档摘要

定积分的应用考试题目及答案

一、单项选择题(每题2分,共20分)

1.由曲线\(y=x^2\),\(x=1\),\(x=2\)及\(x\)轴所围成图形的面积为()

A.\(\frac{7}{3}\)B.\(\frac{8}{3}\)C.\(\frac{1}{3}\)D.\(\frac{4}{3}\)

2.若\(f(x)\)在\([a,b]\)上可积,则\(\int_{a}^{b}f(x)dx\)与\(\int_{a}^{b}f(t)dt\)()

A.不相等B.相等C.仅当\(a=b\)时相等D.不确定

3.定积分\(\int_{-1}^{1}x^3dx\)的值为()

A.\(0\)B.\(1\)C.\(2\)D.\(-1\)

4.由\(y=\sinx\),\(x=0\),\(x=\pi\)及\(x\)轴所围成图形绕\(x\)轴旋转一周所得旋转体的体积为()

A.\(\frac{\pi^2}{2}\)B.\(\pi^2\)C.\(\frac{\pi}{2}\)D.\(\pi\)

5.设\(f(x)\)在\([a,b]\)上连续,\(F(x)\)是\(f(x)\)的一个原函数,则\(\int_{a}^{b}f(x)dx=()\)

A.\(F(a)-F(b)\)B.\(F(b)-F(a)\)C.\(F(b)-F(a)\)D.\(F(a)-F(b)\)

6.曲线\(y=e^x\)在\([0,1]\)上与\(x\)轴、\(x=0\)、\(x=1\)所围成图形的面积为()

A.\(e\)B.\(e-1\)C.\(1-e\)D.\(e+1\)

7.定积分\(\int_{0}^{2}|x-1|dx\)的值为()

A.\(1\)B.\(2\)C.\(0\)D.\(-1\)

8.已知\(f(x)\)在\([-a,a]\)上连续且为偶函数,则\(\int_{-a}^{a}f(x)dx=()\)

A.\(0\)B.\(2\int_{0}^{a}f(x)dx\)C.\(\int_{0}^{a}f(x)dx\)D.\(-2\int_{0}^{a}f(x)dx\)

9.由\(y=x\),\(y=0\),\(x=1\)所围成图形绕\(y\)轴旋转一周所得旋转体的体积为()

A.\(\frac{\pi}{3}\)B.\(\frac{\pi}{2}\)C.\(\pi\)D.\(\frac{2\pi}{3}\)

10.若\(\int_{a}^{b}f(x)dx=0\),则()

A.\(f(x)=0\)B.\(f(x)\)在\([a,b]\)上恒为\(0\)C.不一定有\(f(x)=0\)D.\(f(x)\)在\([a,b]\)上不连续

二、多项选择题(每题2分,共20分)

1.下列哪些函数在\([a,b]\)上可积()

A.连续函数B.有界且只有有限个间断点的函数

C.单调有界函数D.无界函数

2.定积分的性质包括()

A.\(\int_{a}^{b}[f(x)+g(x)]dx=\int_{a}^{b}f(x)dx+\int_{a}^{b}g(x)dx\)

B.\(\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx\)(\(k\)为常数)

C.\(\int_{a}^{b}f(x)dx=-\int_{b}^{a}f(x)dx\)

D.\(\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx=\int_{a}^{b}f(x)dx\)(\(acb\))

3.计算旋转体体积可以使用的方法有()

A.圆盘法B.圆柱壳法C.梯形法D.辛普森法

4.下列积分值为\(0\)的有()

A.\(\int_{-1}^{1}x^5dx\)B.\(\int_{-\pi}^{\pi}\sinxdx\)C.\(\int_{-1}^{1}x^4dx\)D.\(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cosxdx\)

5.由曲线\(y=f(x)\),\(y=g(x)\)(\(f(x)\geqg(x)\)),\(x=a\),\(x=b\)