广东省茂名市五大联盟学校2025届高三二诊模拟考试数学试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么()
A.国防大学,研究生 B.国防大学,博士
C.军事科学院,学士 D.国防科技大学,研究生
2.若函数的图象上两点,关于直线的对称点在的图象上,则的取值范围是()
A. B. C. D.
3.已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()
A. B. C. D.
4.双曲线的渐近线方程为()
A. B. C. D.
5.若,,则的值为()
A. B. C. D.
6.已知双曲线的两条渐近线与抛物线的准线分别交于点、,O为坐标原点.若双曲线的离心率为2,三角形AOB的面积为,则p=().
A.1 B. C.2 D.3
7.已知复数(1+i)(a+i)为纯虚数(i为虚数单位),则实数a=()
A.-1 B.1 C.0 D.2
8.已知函数(),若函数有三个零点,则的取值范围是()
A. B.
C. D.
9.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是()
A.45 B.50 C.55 D.60
10.的展开式中的一次项系数为()
A. B. C. D.
11.设函数在定义城内可导,的图象如图所示,则导函数的图象可能为()
A. B.
C. D.
12.我国古代数学名著《九章算术》有一问题:“今有鳖臑(biēnaò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为()
A.平方尺 B.平方尺
C.平方尺 D.平方尺
二、填空题:本题共4小题,每小题5分,共20分。
13.函数的定义域为____.
14.已知,分别是椭圆:()的左、右焦点,过左焦点的直线与椭圆交于、两点,且,,则椭圆的离心率为__________.
15.已知圆C:经过抛物线E:的焦点,则抛物线E的准线与圆C相交所得弦长是__________.
16.割圆术是估算圆周率的科学方法,由三国时期数学家刘徽创立,他用圆内接正多边形面积无限逼近圆面积,从而得出圆周率.现在半径为1的圆内任取一点,则该点取自其内接正十二边形内部的概率为________.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)如图,在四棱锥中,是边长为的正方形的中心,平面,为的中点.
(Ⅰ)求证:平面平面;
(Ⅱ)若,求二面角的余弦值.
18.(12分)已知函数.
(1)讨论的单调性;
(2)若,设,证明:,,使.
19.(12分)已知函数.
(1)当(为自然对数的底数)时,求函数的极值;
(2)为的导函数,当,时,求证:.
20.(12分)已知数列满足,,数列满足.
(Ⅰ)求证数列是等比数列;
(Ⅱ)求数列的前项和.
21.(12分)如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)若,求直线AP与平面所成角;
(2)在线段上是否存在一个定点Q,使得对任意的实数m,都有,并证明你的结论.
22.(10分)在极坐标系中,曲线的极坐标方程为
(1)求曲线与极轴所在直线围成图形的面积;
(2)设曲线与曲线交于,两点,求.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1、C
【解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.
【详解】
由题意①甲不是军事科学院的,③乙不是军事科学院的;
则丙来自军事科学院;
由②来自军事科学院的不是博士,则丙不是博士;
由⑤国防科技大学的是研究生,可知丙不是研究生,
故丙为学士.
综上可知,