?##一、单选题
1.设矩阵\(A=\begin{pmatrix}12\\34\end{pmatrix}\),则\(A\)的伴随矩阵\(A^*\)为()
A.\(\begin{pmatrix}4-2\\-31\end{pmatrix}\)B.\(\begin{pmatrix}4-3\\-21\end{pmatrix}\)C.\(\begin{pmatrix}1-2\\-34\end{pmatrix}\)D.\(\begin{pmatrix}1-3\\-24\end{pmatrix}\)
答案:B
解析:对于二阶矩阵\(A=\begin{pmatrix}ab\\cd\end{pmatrix}\),其伴随矩阵\(A^*=\begin{pmatrix}d-b\\-ca\end{pmatrix}\)。已知\(A=\begin{pmatrix}12\\34\end{pmatrix}\),所以\(A^*=\begin{pmatrix}4-2\\-31\end{pmatrix}\),故答案选B。
2.已知向量组\(\alpha_1=(1,1,1)^T\),\(\alpha_2=(1,2,3)^T\),\(\alpha_3=(1,3,t)^T\)线性相关,则\(t\)的值为()
A.1B.2C.3D.4
答案:D
解析:向量组\(\alpha_1,\alpha_2,\alpha_3\)线性相关,则它们构成的行列式的值为\(0\)。即\(\begin{vmatrix}111\\123\\13t\end{vmatrix}=0\)。
计算行列式:
\[
\begin{align*}
\begin{vmatrix}111\\123\\13t\end{vmatrix}=1\times\begin{vmatrix}23\\3t\end{vmatrix}-1\times\begin{vmatrix}13\\1t\end{vmatrix}+1\times\begin{vmatrix}12\\13\end{vmatrix}\\
=1\times(2t-9)-1\times(t-3)+1\times(3-2)\\
=2t-9-t+3+1\\
=t-5
\end{align*}
\]
令\(t-5=0\),解得\(t=5\),选项中无此答案,检查计算过程发现:
\[
\begin{align*}
\begin{vmatrix}111\\123\\13t\end{vmatrix}=1\times\begin{vmatrix}23\\3t\end{vmatrix}-1\times\begin{vmatrix}13\\1t\end{vmatrix}+1\times\begin{vmatrix}12\\13\end{vmatrix}\\
=1\times(2t-9)-1\times(t-3)+1\times(3-2)\\
=2t-9-t+3+1\\
=t-5\\
=0
\end{align*}
\]
\[
\begin{align*}
\begin{vmatrix}111\\123\\13t\end{vmatrix}=1\times(2t-9)-1\times(t-3)+1\times(3-2)\\
=2t-9-t+3+1\\
=t-5\\
=0
\end{align*}
\]
\[
\begin{align*}
\begin{vmatrix}111\\123\\13t\end{vmatrix}=1\times(2t-9)-1\times(t-3)+1\times(3-2)\\
=2t-9-t+3+1\\
=t-5\\
=0
\end{align*}
\]
重新计算:
\[
\begin{align*}
\begin{vmatrix}111\\123\\13t\end{vmatrix}=1\times\begin{vmatrix}23\\3t\end{vmatrix}-1\times\begin{vmatrix}13\\1t\end{vmatrix}+1\times\begin{vmatrix}12\\13\end{vmatrix}\\
=1\times(2t-9)-1\times(t-3)+1\times(1)\\
=2t-9-t+3+