基本信息
文件名称:北师 九年级 下册 数学《阶段拔尖专训5 二次函数与几何变换》复习课 课件.pptx
文件大小:2.65 MB
总页数:28 页
更新时间:2025-03-21
总字数:约小于1千字
文档摘要

;;类型1二次函数与平移变换;(1)求L的顶点坐标及A,B两点之间的距离;;(2)当点P在y轴上时,求L′的表达式及线段PQ的长.;返回;2.[2024西安铁一中五模]如图,在平面直角坐标系中,抛物线y=ax2+bx(a<0)过点E(-7,0),矩形ABCD的边BC在线段OE上(点B在点C的左边),点A,D在抛物线上,且D(-1,3).;(1)求该抛物线的表达式;;(2)保持矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点M,N,且直线MN平分矩形ABCD的面积时,求抛物线平移的距离.;返回;类型2二次函数与对称变换;(2)如图②,D是线段AC上的动点(点D不与点A,C重合),连接BD,将△BCD沿x轴翻折得到△BFG.当点G在抛物线上时,求点G的坐标.;返回;4.如图,已知抛物线y=x2-x-2交x轴于A,B两点,将该抛物线位于x轴下方的部分沿x轴翻折,其余部分不变,得到的新图象记为“图象W”,图象W交y轴于点C.;(1)写出图象W位于线段AB上方部分对应的函数关系式;;(2)若直线y=-x+b与图象W有三个交点,请结合图象,求出b的值.;【解】由图象得直线y=-x+b与图象W有三个交点时,存在两种情况:①当直线y=-x+b过点C时,与图象W有三个交点,此时b=2;②当直线y=-x+b与图象W位于线段AB上方部分对应的函数图象相切时,如图,

则-x+b=-x2+x+2,∴x2-2x+b-2=0,

∴Δ=(-2)2-4×1×(b-2)=0,∴b=3.

综上,b的值是2或3.;5.[2024曲阜一模节选]如图,抛物线y=ax2+bx+c的顶点为M(2,-2),与x轴的交点为A和B

(其中点A与原点重合),将抛物线y=

ax2+bx+c绕点B逆时针方向旋转90°,

点M1,A1为点M,A旋转后的对应点.;(1)求抛物线y=ax2+bx+c的表达式;;返回;(1)求此抛物线的表达式;;(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A的对应点是点E.写出点E的坐标,并判断点E是否在此抛物线上.;返回