江苏省泰州市泰兴市黄桥教育联盟重点名校2024届中考二模数学试题
注意事项:
1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图中任意画一个点,落在黑色区域的概率是()
A. B. C.π D.50
2.在下列二次函数中,其图象的对称轴为的是
A. B. C. D.
3.如图,,交于点,平分,交于.若,则?的度数为()
??
A.35o B.45o C.55o D.65o
4.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n1)个点.当n=2018时,这个图形总的点数S为()
A.8064 B.8067 C.8068 D.8072
5.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()
A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b
6.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了32分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有()
A.1个 B.2个 C.3个 D.4个
7.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为()
A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
8.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是???
A. B. C. D.
9.在△ABC中,∠C=90°,tanA=125,△ABC的周长为60,那么△ABC
A.60 B.30 C.240 D.120
10.计算结果是()
A.0 B.1 C.﹣1 D.x
二、填空题(本大题共6个小题,每小题3分,共18分)
11.阅读下面材料:
在数学课上,老师提出利用尺规作图完成下面问题:
已知:求作:的内切圆.
小明的作法如下:如图2,
作,的平分线BE和CF,两线相交于点O;
过点O作,垂足为点D;?
点O为圆心,OD长为半径作所以,即为所求作的圆.
请回答:该尺规作图的依据是______.
12.如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限。将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为____.
13.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成如图图案,则第4个图案中有__________白色纸片,第n个图案中有__________张白色纸片.
14.计算(﹣3)+(﹣9)的结果为______.
15.若正六边形的边长为2,则此正六边形的边心距为______.
16.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.
判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=,求线段CD的长.
18.(8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C落在第二象限.其斜边两端点A、B分别落在x轴、y轴上且AB=12cm
(1)若OB=6cm.
①求点C的坐标;
②若点A向右滑动的距离与点B向上滑动的距离相等,求滑动的距离;
(2)点C与点O的距离的最大值是多少cm.
19.(8分)问题提出
(1).如图1,在四边形ABCD中,AB=BC,AD=CD=3,∠BAD=∠BCD=90°,∠ADC=60°,则四边形ABCD的面积为_;
问题探究
(2).如图2,在四边形ABCD中,∠BAD=∠BCD=90°,∠ABC=135°,AB=22,B