第12讲:力的分解和分解
【知识归纳】
考点一:合力与分力的关系
考点二:合力的取值范围
考点三:力的平行四边形法则
考点四:两个力成特殊角合力计算
考点五:三角形法则
考点六:力按效果分解问题
考点七:力的正交分解问题
考点八:力的合成与分解的动态和极值问题
考点九:验证力的平行四边形法则实验
考点十:力的合成与分解综合问题
【知识归纳】
知识点一、合力和分力
1.共点力
几个力如果都作用在物体的同一点,或者它们的作用线相交于一点,这几个力叫作共点力.
2.合力与分力
假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,这几个力叫作那个力的分力.
3.合力与分力的关系
合力与分力之间是一种等效替代的关系,合力作用的效果与分力共同作用的效果相同.
考点二、力的合成和分解
1.力的合成:求几个力的合力的过程.
2.力的分解:求一个力的分力的过程.
3.平行四边形定则:在两个力合成时,以表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,如图所示,F表示F1与F2的合力.
4.如果没有限制,同一个力F可以分解为无数对大小、方向不同的分力.
5.两个以上共点力的合力的求法:先求出任意两个力的合力,再求出这个合力与第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力.
重难点规律精讲:
一:合力与分力的关系
1.两分力同向(θ=0)时,合力最大,F=F1+F2,合力与分力同向.
2.两分力反向(θ=180°)时,合力最小,F=|F1-F2|,合力的方向与较大的一个分力的方向相同.
3.当两个分力大小不变时,合力F随两分力夹角θ的增大而减小,合力的大小取值范围:|F1-F2|≤F≤F1+F2.
4.合力大小可能大于某一分力,可能小于某一分力,也可能等于某一分力.
二、力的合成和分解
1.共点力合成的方法
(1)作图法。(2)计算法。
三:按效果分解
(1)分解原则:根据力的作用效果确定分力的方向,然后再画出力的平行四边形.
(2)基本思路
2.常见典型力的分解实例
实例
产生效果分析
水平地面上物体受斜向上的拉力F,拉力F一方面使物体沿水平地面前进,另一方面向上提物体,因此拉力F可分解为水平向前的力F1和竖直向上的力F2.F1=Fcosα,F2=Fsinα.
质量为m的物体静止在斜面上,其重力产生两个效果:一是使物体具有沿斜面下滑趋势的分力F1,二是使物体压紧斜面的分力F2.F1=mgsinα,F2=mgcosα.
质量为m的光滑小球被竖直挡板挡住而静止于斜面上时,其重力产生两个效果:一是使球压紧挡板的分力F1,二是使球压紧斜面的分力F2.F1=mgtanα,F2=eq\f(mg,cosα).
质量为m的光滑小球被悬线挂靠在竖直墙壁上,其重力产生两个效果:一是使球压紧竖直墙壁的分力F1,二是使球拉紧悬线的分力F2.F1=mgtanα,F2=eq\f(mg,cosα).
A、B两点位于同一平面上,质量为m的物体被AO、BO两线拉住,其重力产生两个效果:一是使物体拉紧AO线的分力F1,二是使物体拉紧BO线的分力F2.F1=F2=eq\f(mg,2sinα).
质量为m的物体被支架悬挂而静止,其重力产生两个效果:一是拉伸AB的分力F1,二是压缩BC的分力F2.F1=mgtanα,F2=eq\f(mg,cosα).
四、力的正交分解法
1.力的正交分解法
把力沿着两个经选定的互相垂直的方向分解的方法叫力的正交分解法.如图所示,将力F沿x轴和y轴两个方向分解,则
Fx=Fcosα Fy=Fsinα
2.正交分解法求合力
(1)建立直角坐标系:以共点力的作用点为坐标原点,直角坐标系x轴和y轴的选择应使尽量多的力在坐标轴上.
(2)正交分解各力:将每一个不在坐标轴上的力分解到x轴和y轴上,并求出各分力的大小,如图所示.
(3)分别求出x轴、y轴上各分力的矢量和,即:Fx=F1x+F2x+…,Fy=F1y+F2y+….
(4)求共点力的合力:合力大小F=eq\r(F\o\al(2,x)+F\o\al(2,y)),设合力的方向与x轴的夹角为α则tanα=eq\f(Fy,Fx).
五、力的分解中定解条件讨论
把力按照题中给定的条件分解.若代表合力的对角线与给定的代表分力的有向线段能构成平行四边形(或三角形),说明合力可以分解成给定的分力,即有解;若不能,则无解.常见的有几种情况.
已知条件
分解示意图
解的情况
已知两个分力的方向
唯一解
已知一个分力的大小和方向
唯一解
已知一个分力(F2)的大小和另一个分力(F1)的方向
①F2<Fsinθ
无解
②F2