PAGE3/NUMPAGES9
专题05概率与统计综合
目录
TOC\o1-2\h\u热点题型归纳 1
题型01数据的收集与整理(统计与统计图(表)) 1
题型02数据分析(数据的集中趋势与波动程度) 12
题型03概率的计算 24
中考练场 37
题型01数据的收集与整理(统计与统计图(表))
数据的收集与整理(统计与统计图(表))是初中数学统计与概率板块的重要内容,它主要围绕如何收集数据、整理数据以及通过图表直观呈现数据信息展开,在中考数学中分值占比约5%-10%。
1.考查重点:重点考查数据收集方法的选择,以及对各类统计图表(如条形图、折线图、扇形图、频数分布直方图等)特征和数据的解读。
2.能力要求:要求学生具备数据处理能力,能从图表中准确提取关键信息,进行合理的计算与推理,同时具备数据分析观念和统计意识。
【提分秘籍】
调查数据的方法与过程:
①问卷调查法收集数据;②列统计表整理数据;③画统计图描述数据。
全面调查与抽样调查:
①全面调查:调查全体对象。②抽样调查:调查部分对象。
总体、个体、样本以及样本容量:
①总体:我们把所要考察的对象的全体叫做总体;②个体:把组成总体的每一个考察对象叫做个体;
③样本:从总体中取出的一部分个体叫做这个总体的一个样本;
④样本容量:一个样本包括的个体数量叫做样本容量。
用样本估计总体:
①样本平均数:即抽出的样本中所有个体的平均数。②总体平均数:总体中所有个体的平均数。
通常情况下用一个具有代表性的样本的平均数估算总体平均数。
数据描述的方法:
条形统计图,折线统计图,扇形统计图以及直方图。
频数与频率:
①频数:落在每一个小组的数据个数叫做每一组的频数。②频率:频数与总数的比值叫做频率。
相关计算:
①各部分具体数量等于总体数量乘以各部分所占百分比。
②各部分在扇形中所占圆心角度数等于360°乘以百分比。
画直方图的步骤:
第一步:计算数据的极差。即一组数据中的最大值减去最小值。
第二步:决定组数与组距。①组数:通常自己决定,合理组数即可。②组距:组距≥。
第三步:决定分组分点。第四步:画频数分布表。第五步:画频数分布直方图。
【典例分析】
例1.(2024·山东德州·中考真题)某校随机调查了本学期部分学生读课外书的册数情况,整理得到如下不完整的统计表和扇形图.
册数
四册
五册
六册
七册
人数
6
a
9
7
(1)本次调查的学生人数为________;
(2)________;
(3)已知该校共有1800名学生,请估计全校本学期读四册课外书的学生人数________;
(4)学校随后又补查了另外几人读课外书的册数情况,发现这几人读课外书的册数恰好相同.将其与之前的数据合并后,发现册数的众数变成了另外一个数,则补查的人数最少为________.
【答案】(1)36
(2)14
(3)300
(4)6
【分析】本题考查了扇形统计图、用样本估计总体、众数,解答本题的关键是明确题意,利用数形结合的思想解答.
(1)用读书为6册的人数除以它所占的百分比得到调查的总人数;
(2)用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数;
(3)用样本估计总体即可;
(4)根据原来的众数是读书册数为5册,且读课外书为5册的人数为14人,根据读课外书册数为6册的人数为9人,与读书册数为5册的人数最接近,再根据补查后众数发生改变,从而得到最少补查的人数.
【详解】(1)解:本次调查的学生人数为:
(人);
(2)解:;
(3)解:该校本学期读四册课外书的学生人数约为:
(人);
(4)解:∵补查前读课外书册数最多的是五册,
∴补查前读课外书册数的众数为5,
∵补查的几人读课外书的册数恰好相同,且补查后读课外书册数的众数变成了另外一个数,
∴补查的人数最少为(人).
例2.(2024·江苏宿迁·中考真题)某校为丰富学生的课余生活,开展了多姿多彩的体育活动,开设了五种球类运动项目:A篮球,B足球,C排球,D羽毛球,E乒乓球.为了解学生最喜欢以上哪种球类运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并绘制了统计图:
某同学不小心将图中部分数据丢失,请结合统计图,完成下列问题:
(1)本次调查的样本容量是________,扇形统计图中C对应圆心角的度数为________
(2)请补全条形统计图;
(3)若该校共有2000名学生,请你估计该校最喜欢“E乒乓球”的学生人数.
【答案】(1)200;36
(2)见解析
(3)460人
【分析】本题主要考查了条形统计图和扇形统计图,样本估计总体:
(1)用最喜欢“D羽毛球”的学生人数除以其所占的百分比,可得样本容量,再用360度乘以最喜欢“B足