第4章4.54.5.
1.下列积分值等于1的是()
A.eq\i\in(0,1,)xdx B.eq\i\in(0,1,)(x+1)dx
C.eq\i\in(0,1,)1dx D.eq\i\in(0,1,)eq\f(1,2)dx
解析:eq\i\in(0,1,)1dx=1-0=1.
答案:C
2.eq\i\in(0,1,)(ex+2x)dx=()
A.1 B.e-1
C.e D.e+1
解析:eq\i\in(0,1,)(ex+2x)dx=(e1+12)-(e0+02)
=(e1+1)-e0=e.
答案:C
3.eq\i\in(0,3,)|x2-4|dx=()
A.eq\f(21,3) B.eq\f(22,3)
C.eq\f(23,3) D.eq\f(25,3)
解析:eq\i\in(0,3,)|x2-4|dx=eq\i\in(0,2,)(4-x2)dx+eq\i\in(2,3,)(x2-4)dx=eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(4×2-\f(1,3)×23))-\b\lc\(\rc\)(\a\vs4\al\co1(4×0-\f(1,3)×03))))+eq\b\lc\[\rc\](\a\vs4\al\co1(\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)×33-4×3))-\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)×23-4×2))))=eq\f(23,3),故选C.
答案:C
4.若eq\i\in(-a,a,)x2dx=18(a0),则a=____________.
解析:eq\i\in(-a,a,)x2dx=eq\f(a3,3)-eq\f(?-a?3,3)=18,即a=3.
答案:3
5.求下列定积分:
(1)eq\i\in(1,2,)eq\f(2x2+x+1,x)dx;
(2)eq\i\in(0,π,)eq\r(2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,4)))dx.
解:(1)eq\i\in(1,2,)eq\f(2x2+x+1,x)dx=eq\i\in(1,2,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x+\f(1,x)+1))dx=eq\i\in(1,2,)2xdx+eq\i\in(1,2,)eq\f(1,x)dx+eq\i\in(1,2,)1dx=4-1+ln2-ln1+2-1=4+ln2.
(2)∵eq\r(2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,4)))=eq\r(2)eq\b\lc\(\rc\)(\a\vs4\al\co1(sinx·\f(\r(2),2)+cosx·\f(\r(2),2)))=sinx+cosx,(-cosx+sinx)′=sinx+cosx,
∴eq\i\in(0,π,)eq\r(2)sineq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(π,4)))dx=eq\i\in(0,π,)(sinx+cosx)dx=(-cosπ+sinπ)-(-cos0+sin0)=2.