第4章4.54.5.1
1.下列等式不成立的是()
A.eq\i\in(a,b,)[mf(x)+ng(x)]dx=meq\i\in(a,b,)f(x)dx+neq\i\in(a,b,)g(x)dx
B.eq\i\in(a,b,)[f(x)+1]dx=eq\i\in(a,b,)f(x)dx+b-a
C.eq\i\in(a,b,)f(x)g(x)dx=eq\i\in(a,b,)f(x)dx·eq\i\in(a,b,)g(x)dx
D.eq\i\in(-2π,2π,)sinxdx=eq\i\in(-2π,2π,)πsinxdx+eq\i\in(0,2π,)sinxdx
解析:由定积分的性质知选项A,B,D正确,故选C.
答案:C
2.定积分eq\i\in(1,3,)(-3)dx=()
A.-6 B.6
C.-3 D.3
解析:eq\i\in(1,3,)3dx表示右图中阴影部分的面积S=3×2=6,eq\i\in(1,3,)(-3)dx=-eq\i\in(1,3,)3dx=-6.
答案:A
3.求由曲线y=ex、直线x=2、y=1围成的曲边梯形的面积时,若选择x为积分变量,则积分上限和积分下限分别为()
A.e2,0 B.2,0
C.2,1 D.1,0
解析:解方程组
eq\b\lc\{\rc\(\a\vs4\al\co1(y=ex,,y=1,))eq\b\lc\{\rc\(\a\vs4\al\co1(y=ex,,x=2,))
可得eq\b\lc\{\rc\(\a\vs4\al\co1(x=0,,y=1,))eq\b\lc\{\rc\(\a\vs4\al\co1(x=2,,y=e2.))
∴积分上限为2,积分下限为0.
答案:B
4.计算eq\i\in(1,2,)eq\r(4-x2)dx=____________.
解析:由定积分的几何意义知,所求积分是图中阴影部分的面积.易知AB=eq\r(3),∠AOB=eq\f(π,3),故S阴=eq\f(1,6)×4π-eq\f(1,2)×1×eq\r(3)=eq\f(2π,3)-eq\f(\r(3),2).
答案:eq\f(2π,3)-eq\f(\r(3),2)
5.已知eq\i\in(0,1,)x3dx=eq\f(1,4),eq\i\in(1,2,)x3dx=eq\f(15,4),eq\i\in(1,2,)x2dx=eq\f(7,3),eq\i\in(2,4,)x2dx=eq\f(56,3),求下列各式的值:
(1)eq\i\in(0,2,)3x3dx;
(2)eq\i\in(1,4,)6x2dx;
(3)eq\i\in(1,2,)(3x2-2x3)dx.
解:(1)eq\i\in(0,2,)3x3dx=3eq\i\in(0,2,)x3dx=3eq\b\lc\(\rc\)(\a\vs4\al\co1(\i\in(0,1,)x3dx+\i\in(1,2,)x3dx))=3eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4)+\f(15,4)))=12.
(2)eq\i\in(1,4,)6x2dx=6eq\i\in(1,4,)x2dx=6eq\b\lc\(\rc\)(\a\vs4\al\co1(\i\in(1,2,)x2dx+\i\in(2,4,)x2dx))=6eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(7,3)+\f(56,3)))=126.
(3)eq\i\in(1,2,)(3x2-2x3)dx=3eq\i\in(1,2,)x2dx-2eq\i\in(1,2,)x3dx=3×eq\f(7,3)-2×eq\f(15,4)=-eq\f(1,2).