基本信息
文件名称:动态规划所有点对的最短距离.ppt
文件大小:2.21 MB
总页数:10 页
更新时间:2025-04-03
总字数:约4.21千字
文档摘要

第七章动态规划7.5所有点对的最短路径问题对于一个各边权值均大于0的有n个顶点的带权有向图G=(V,E),求所有顶点之间的最短路径和最短距离。图的邻接矩阵表示法123V=(b)(a)28196123L=029061∞0其基本思想是,设置顶点集合S并不断地作贪心选择来扩充这个集合。一个顶点属于集合S当且仅当从源到该顶点的最短路径长度已知。初始时,S中仅含有源点。设u是G的某一个顶点,把从源点到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组distance记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组distance作必要的修改。一旦S包含了所有V中顶点,distance就记录了从源到所有其它顶点之间的最短路径长度。复习Dijkstra算法算法中,我们不断更新以下三个数组:s数组:s[i],当顶点i加入S时,s[i]置1Distance数组:Distance[i]记录原点到顶点i的最短特殊路径长度。path数组:path[i]记录顶点i在其最短特殊路径上的前驱顶点。由该数组可求得原点到各点的最短路径。如:设源点是顶点1,path数组如下 例如,对右图中的有向图,应用Dijkstra算法计算从源顶点1到其它顶点间最短路径的过程列在下页的表中。0141301050306011111s:distance:path:由源点1到顶点5的路径为:1-4-3-5方法一:重复调用Dijkstra算法n次1可轮流以每一个顶点为源点,重复调用狄克斯特拉算法函数Dijkstra()n次,即可求得所有顶点之间的最短路径和最短距离。利用Dijkstra()函数求所有顶点之间的最短路径算法如下。其中,distance[i][j]中存放着从顶点i到顶点j的最短距离,path[i][j]中存放着从顶点i到顶点j的最短路径的前一顶点下标。2voidShortPath(AdjMWGraphG,int**distance,int**path){Intn=G.NumOfVertices();for(inti=0;in;i++)Dijkstra(G,i,distance[i],path[i]);}由于狄克斯特拉算法的时间复杂度是O(n2),所以n次调用狄克斯特拉算法的时间复杂度是O(n3)。例如上图中,若路线I和J是A到C的最优路径,则根据最优化原理,路线J必是从B到C的最优路线。该问题具有最优子结构性质01原问题:每个顶点到其他所有顶点的最短距离最小的子问题D0:从顶点i(不得经过任何其他顶点)到顶点j的距离;子问题D1:从顶点i(可以经过顶点1,不得经过其他任何其他顶点)到顶点j的距离。0203子问题的构造子问题Dk:从顶点i(可以经过顶点1、顶点2、……顶点k,不得经过任何其他顶点)到顶点j的距离。子问题Dn:从顶点i(可以经过顶点1、顶点2、……顶点n)到顶点j的距离。——即原问题递推关系的建立由di,jk-1推出di,jk的过程如下若k=0,di,jk=L[i][j](因为从i到j不允许经过任何其他顶点)若1≤k≤n,di,jk=min{di,jk-1,di,kk-1+dk,jk-1}子问题Dk-1:从顶点i(可以经过顶点1、顶点2、……、顶点k-1)到顶点j的距离。子问题Dk:从顶点i(可以经过顶点1、顶点2、……顶点k-1、顶点k)到顶点j的距离。从子问题Dk-1:到子问题Dk,仅仅多考虑了一个顶点k。我们需要重新考虑从i到j的距离:顶点i到顶点j,是不是从k走会更近?如果从顶点i到顶点j从顶点k走更近,则i到j的距离di,jk=i到k的距离di,kk-1+k到j的距离dk,jk-1如果顶点i到顶点j从顶点k走更远,甚至走不通,则保持原来的距离不变di,jk=di,jk-1。由di,jk-1推出di,jk的过程,主要考虑的是顶点k的加入会引起什么变化?由不允许路过顶点k到允许路过顶点k,有些点间的距离是否会变的更近。计算过程例:考虑下图所示的带权有向图,求所有顶点之间的最短距离。V=(b)(a)12328196123L=029061∞012328