光
1、理解光的折射定律,理解折射率的概念
2、知道光的全反射现象及其产生的条件,并学会全反射的条件进行计算
3、了解光纤的工作原理、
4、知道什么是光的干涉、衍射和偏振,了解这些现象产生的条件,会根据干涉条纹进行简单的计算
一、光的折射定律折射率
1.折射定律
(1)内容:如图所示,折射光线与入射光线、法线处在同一平面内,折射光线与入射光线分别位于法线的两侧;入射角的正弦与折射角的正弦成正比。
(2)表达式:eq\f(sinθ1,sinθ2)=n12。
(3)在光的折射现象中,光路是可逆的。
2.折射率
(1)折射率是一个反映介质的光学性质的物理量。
(2)定义式:n=eq\f(sinθ1,sinθ2)。
(3)计算公式:n=eq\f(c,v),因为v<c,所以任何介质的折射率都大于1。
(4)当光从真空(或空气)斜射入某种介质时,入射角大于折射角;当光由介质斜射入真空(或空气)时,入射角小于折射角。
(5)折射率的大小不仅反映了介质对光的折射本领,也反映了光在该介质中传播速度的大小v=eq\f(c,n).
(6)折射率的大小不仅与介质本身有关,还与光的频率有关.
①同一种介质中,频率越大的光折射率越大,传播速度越小.
②同一种光,在不同介质中虽然波速、波长不同,但频率相同.
二、全反射光导纤维
1.定义:光从光密介质射入光疏介质,当入射角增大到某一角度时,折射光线将全部消失,只剩下反射光线的现象叫作全反射。
2.条件
(1)光从光密介质射入光疏介质。
(2)入射角大于或等于临界角。
3.临界角:折射角等于90°时的入射角。若光从光密介质(折射率为n)射向真空或空气时,发生全反射的临界角为C,则sinC=eq\f(1,n)。介质的折射率越大,发生全反射的临界角越小。
4.全反射的理解
(1)如果光从光疏介质进入光密介质,则无论入射角多大,都不会发生全反射现象。
(2)光的全反射遵循光的反射定律,光路是可逆的。
(3)当光射到两种介质的界面上时,往往同时发生光的折射和反射现象,但在全反射现象中,只发生反射,不发生折射。当折射角等于90°时,实际上已经没有折射光了。
(4)从能量角度理解全反射现象:当光由光密介质射向光疏介质时,在入射角逐渐增大的过程中,反射光的能量逐渐增强,折射光的能量逐渐减弱,当入射角等于临界角时,折射光的能量减弱为零,这时就发生了全反射。
5.全反射的有关现象
海水浪花呈白色、玻璃或水中的气泡看起来特别亮、沙漠蜃景、海市蜃楼、钻石的光彩夺目、水下的灯不能照亮整个水面等。
6.全反射的应用
(1)全反射棱镜:用来改变光的方向。
(2)光导纤维(简称光纤)
①结构:是一种透明的玻璃纤维丝,直径在几微米到一百微米之间,由内芯和外套两层组成,内芯的折射率大于外套的折射率,即内芯是光密介质,外套是光疏介质。
②原理:光在光纤的内芯中传播,每次射到内芯和外套的界面上时,入射角都大于临界角,从而发生全反射。
三、平行玻璃砖、三棱镜和圆柱体(球)对光路的控制特点
平行玻璃砖
三棱镜
圆柱体(球)
对光线的作用
通过平行玻璃砖的光线不改变传播方向,但要发生侧移
通过三棱镜的光线经两次折射后,出射光线向棱镜底面偏折
圆界面的法线是过圆心的直线,光线经过两次折射后向圆心偏折
四、光的干涉
1.如果两列光的频率相同、相位差恒定、振动方向相同,就会发生干涉现象。
2.光的双缝干涉
(1)原理如图2所示。
(2)出现亮、暗条纹的条件
①光的路程差r2-r1=±kλ(k=0,1,2…),光屏上出现亮条纹。
②光的路程差r2-r1=±(2k+1)eq\f(λ,2)(k=0,1,2…),光屏上出现暗条纹。
(3)相邻两条亮条纹或暗条纹的中心间距公式:Δx=eq\f(l,d)λ。
(4)干涉条纹的特点
①单色光:形成明暗相间的条纹,中央为亮条纹,如图3所示。
②白光:光屏上出现彩色条纹且中央亮条纹是白色,即发生色散,如图4所示。
3.薄膜干涉
(1)原理:如图5所示,不同位置的薄膜,厚度不同,因此在膜上不同的位置,来自前后两个面的反射光的路程差不同,叠加后出现明暗相间的条纹。
(2)应用
①增透膜和增反膜。
②利用薄膜干涉的原理对镜面或其他精密的光学平面的平滑度进行检测。
五、光的衍射
1.几种典型衍射条纹的特点
(1)单缝衍射:①单色光的衍射图样中间为宽且亮(填特点)的单色条纹,两侧是明暗相间的条纹,条纹宽度比中央窄且暗;单色光的波长越长,单缝越窄,中央亮纹越宽。如图7所示。
②白光的衍射图样中间为宽且亮的白条纹,两侧是渐窄且暗的彩色条纹。其中最靠近中央的色光是紫光,离中央最远的是红光,如图8所示,这是光在衍射时的色散。
(2)圆孔衍射:如图9所示,中央是大且亮的圆形光斑,周围分布着明暗相间的不等距圆环,且越靠